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Introduction

Amor ch’al cor gentil ratto s‘apprende,
prese costui de la bella persona
che mi fu tolta; e 'l modo ancor m’offende

Amor ch’a nullo amato amar perdona,
mi prese del costui piacer si forte,
che come vedi ancor non m’abbandona.

Dante Alighieri, Inferno, Canto V, vv. 100-105

Since its definition by Grothendieck and Deligne, étale cohomology has been seen as a
"bridge" between arithmetics and geometry, i.e. something that generalizes purely geomet-
ric aspects, as sheaf cohomology, and purely arithmetic ones, as Galois cohomology.

One of the most important tools in order to calculate these invariants are duality theorems:
roughly speaking, if A is a ring, for a cohomology theory H® with values in A-mod and a
corresponding compact supported cohomology theory H¢, a duality is a collection of perfect
pairings

H" x H}™" — H[

where H' is canonically isomorphic to a "nice" A-mod A. The first example of duality
theorem one meets throughout the study of algebraic topology is probably Poincaré duality
for De Rham cohomology (see | 1):

Theorem. If X is an oriented differential manifold of dimension n, then the wedge prod-
uct induces a perfect pairing of R-vectfor spaces

H"(X,dR) x H27"(X,dR) — H7(X,dR) = R m ¥) — [ynAY

On the other hand, in Galois cohomology one has the whole machinery of Tate dualities
for finite, local and global fields: these are very important tools and I will recall them in
the first chapter, mostly following | ].

The aim of this mémoire is to generalize these theorems in the context of étale coho-
mology: the second chapter is dedicated to the proof of the Proper Base Change theorem,
which I will prove following [Del], and from that proof I will obtain a nice definition of a
cohomology with compact support. Then I will deduce Poincaré duality on smooth curves
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over algebraically closed fields, as it is done in [Del] and [ .

This will follow from an appropriate definition of the cup product pairing coming from the
machinery of derived categories.

This approach leads almost immediately to a generalization of Poincaré duality on smooth
curves over a finite field k, as it is done in | ].

This is the link to arithmetics: in fact this theorem generalizes in some way to Artin-Verdier
duality for global fields.

The aim of the second part is then to prove Artin-Verdier duality for global fields as it is
done in | ], although here, in the case of a number field with at least one real em-
bedding, we need to refine the definition of cohomology with compact support in ordet to
include the real primes too. This can be done in different ways, and I will briefly explain the
approach given by | ]. In the appendix, I will recall some results that are needed. I will
recall results on the cohomology of the Idéle group, mostly following [ ] and [ ],
then results on the cohomology of topoi and the definition of étale cohomology with some
important theorems involved. Most of the theorems are proved in [ ] or [Sta]. Then
I will recall the definition of derived categories and some results needed in the mémoire,
following [Har].

Finally, I will give one powerful application of Poincaré duality for algebraically closed
fields: Grothendieck-Verdier-Lefschetz Trace formula and the consequent rationality of L-
functions on curves over finite fields. I will give an idea of what it is done in [Del].
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Chapter 1

Preliminaries: Tate duality

1.1 Local Tate duality

1.1.1 Tate cohomology groups

Definition 1.1.1. Let G be a finite group, C a G-module. We can define Tate cohomology
groups as

H"(G, M) ifr>0
A" (G, M) = MCY/NgM where Ng = ¥, .0 ifr=0

Ker(Ng)/Ig where Ig = {) ;. gas0 with {3, .sa, =0} ifr=-1

H_,_1(G, M) if r < —1

They can be computed using a complete resolution, i.e. an exact complex of finitely gen-
erated Z[GJ]-modules

Leim Ly Lo L.

together with an element e ¢ L?l that generates the image of do, i.e. dg factors as
Lo do L_4
N
eZ

such that €(x)e = do(x). In particular, if we take a standard resolution P, = Z by free
G-modules, we can consider 0 — Z = P* where

DP; = Homy(P;,, Z)

So we have a complete resolution

pP_4 124 2 125
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And we can consider the cohomology:

~

H"(G, M) = H"(Homg(Le, M))
Proposition 1.1.2. For any G-equivariant pairing
a:MaeN-—-Q
We have a unique cup product
(x,y)— x Uy : H(G, M) x H*(G,N) — H"*(G, Q)

such that

1. dxUy =dxUy)

2. x Udy = (—-1)4e9d(x U p)

3. xUy = (—1)degixideg¥)(y y x)
4. Res(x Uy) = Res(x) U Res(y)

5. Inf(x Uy) = Inf(x) U Inf(y)

Proof. The idea is to generalize the construction for group cohomology, i.e. to construct a
map
CI)l-j : Pi+]- — Pi Rz Pj

which composed with the map
Hom(P;, M) ®z Hom(Pj, N) - Hom(P; ®z Pj, M @z N)

¢ Y ([a®@b ¢la)® P(b))

gives a linear map
Hom(P;, M) ®z Hom(P;j, N) - Hom(P;;, Q)

such that
difug) =df Ug + (—1)%9f udg

so the cup product extends uniquely on the cohomology classes. Hence the point is to show
that such ®;; exists, that the induced cup-product respects the properties 1. — 5. and that
such @ is unique | , Chap. XII, 4-5]

Theorem 1.1.3 (Tate-Nakayama). Let G be a finite group and C be a G-module, u €
H?(G, C) such that:

(a) HY(H,C) =0

(b) H%(H, C) has order equal to that of H and is generated by Res(u).



1.1. LOCAL TATE DUALITY 3

Then, for any G-module M such that Toriz(M ,C) =0, the induced cup-product
H"(G, M) x H%(G,N) — H"*5(G, P)
defines an isomorphism
x+— xUu:H' (G M)— H*%G,M C)

for all integers r.

Proof. | , IX]

1.1.2 Duality relative to class formation

Let G be a profinite group, C a G-module. A collection of isomorphisms
{invy : H*(U,C) = Q/Z}USG open
is said to be a class formation if

(a) HY(U,C) = 0 for all U

(b) For all pairs of subgroups V < U < G with [U : V] = n the following diagram commutes:

H%*(U,C) —— H?*(V,C)

linv U linvv

Q/lz —2—— Q/Z

Remark 1.1.4. If V is normal in U, then the two conditions imply that we have an isomor-
phism of exact sequences

0 —— H2U/V,CY) —— H2(U,C) —— H2(V,C) —— 0

| Jme [

0— iz/z Q/Z i QZ —— 0

The first exact sequence coming from Hochschield-Serre: we have from the seven terms
exact sequence

HY(V,C)V - H?(U/V,CY) — Ker(H?(U, C) — H*(V,C)) —» H'(U/V,HY(V, C))
and by hypothesis (a) we have
HYwv,c)V =0 HYU/V,HYV,C)) = HY(U/V,0)=0

so we have an isomorphism H%(U/V,CY) £ Ker(H?(U,C) — H?(V,C)). We call uy,y the

element in H>(U/V, C") corresponding to %
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Lemma 1.1.5. Let M be a G-module such that Toriz(M, C) = 0. Then the map
a+— aUugy: H'(G/U, M) — H"*2(G/U, M ®; CY)

is an isomorphism for all open normal subgroups U of G and integers r.

Proof. Apply Tate-Nakayama to G/U, CY and ug/y

Theorem 1.1.6. Let (G, C) a class formation, then there is a canonical map (the reci-
procity map)
recg : C¢ — Gab

whose image in G?° is dense and whose kernel is

RLE
U

Proof. Since H2(G/U,Z) = H1(G/U,Z) = (G/U)?® and H°(G/U, CY) = C¢/Ng,uCUV, lemma 1.1.5
gives an isomorphism
(G/U)™ = CCINguC?

So taking the projective limit on the inverses of this maps we get a mono with dense image!

CC/(\NgwC? — G*
U

Hence recg is the corresponding map on CC.

From now on, let G be a profinite group whose order is divisible by all the integers?,
(G, C) a class formation, M a finitely generated G-module and a” (G, M) : Ext;(M, C) — H?>™"(G, M)*
the maps induced by the pairings

Extl,(M, C) x H>™"(G, M) — H2%(G,C) Z Q/Z
In the particular case M = Z:
a Homg(Z,C) = C® and Homg(H?(G,Z),Q/Z) = Homg(Homg(G, Q/Z), Q/Z) = (GP)™* =
G?® for Pontrjagin duality, hence the map a®(G,Z) : C¢ — G? is recg (cfr | , X1, 3,
Proposition 2])

b a'(G,Z) = 0 since HY(G,Z) = 0

¢ Hom(ZC,Q/Z) = Q/Z and oa?(G,Z) : H*(G, M) — Q/Z is invg

!In fact, if C¢/(; NevCV is compact Hausdorff then it is also epi, see for example [ ,1.1.6 and 1.1.7]
%i.e. for all n there is an open subgroup U such that [G : U] = n. This of course makes every open subgroup
divisible by all the integers
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In the particular case M = Z/mZ, using the exact sequence
075 72— ZmZ—0

we have the long exact sequences

0 —— Homg(Z/mZ, C) c¢ m CC 7

L ExtL(Z/mZ, C) — HY(G,C) =0 —— HYG,C) =0 j

L Ext%(Z/mZ,C) ——— H?*(G,C) ———— H?(G,C)

0 Z n Z ZImZ j

L HYG,z) =0 HY(G,z) =0 ——— HY(G,Z/m2) U

L H?%(G,Z) = Homg(G,Q/Z) —— H?(G,Z) = Homg(G,Q/Z) —— H?*(G,Z/mZ)

So by dualizing the second one we get

1
0— H%G,Z/mZ)* - Q/Z = Q/Z — 0
H?*(G,Z/mZ)* — G®® & G — HY(G,Z/mZ)* — 0
a’ Homg(Z/mZ, C) = »(C®) and H?*(G, Z/mZ)* — (G?), so the following diagram com-

mutes

(G, Z/mZ G ZIm7)*

k l
Gab

and if H3(G,Z) = 0 (e.g., if cd(G) < 2), then the vertical map is an isomorphism, hence
in this case a®(G,Z/mZ) = n(recg)

b ExtS(Z/mZ, C) = (CO),, and HY(G, Z/mZ)* = (G)™), so o (G, Z/mZ) = (rec)m

¢’ Ext4(Z/mZ, C) = mH%(G, C) and Z/mZ* = 1 7Z/Z, so a®(G, Z/mZ) = w(invg)

Lemma 1.1.7. 1. Forr > 4, Ext;(M,C) =0

2. For r > 3 and M torsion free, Ext;(M,C) =0
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Proof. Recall that every finitely generated G-module can be solved as
O—- M —My— M—0

with M and M finitely generated torsion free. Hence it's enough to prove to prove 2.
Let N = Homyz(M,Z) = 9Com(M, Z), then N ®z C = Homz(M, C) as G-modules, then we
have the spectral sequence

HP(G,Extl(M, C)) = Ext3" (M, C)

And since M is torsion free of finite type, let U be an open such that MY = M, so MV is a
G/U-module torsion free of finite type, hence a torsion free of finite type Z-module since
G/U is finite, so it's a free Z-module. So Ext} (M, C) = Ext1(MY, C) = 0 for all q > 0, so the
spectral sequence degenerates in degree 2 and we get

Ext}(M,C) = HP(G,N®z C) = lim  HP(G/U,N @z CY)
U<G:NU=N

So for Tate-Nakayama, a — a U ug/y gives for r > 3 the isomorphisms
H"2(G/U,N) 5 H"(G/U,N @z CY)

Moreover, if V < U, we have by definition of u that Inf(ug,y) = [U : V]ugv and by definition
of cup product we have Inf(a Ub) = Inf(a) U Inf(b), so we have a commutative diagram

H"2(G/U,N) —— H"(G/U,N ®z CY)

l[U:V]Inf llnf

H"%(G/V,N) — H"(G/V,N @z C")

But since H"“2(G/U, N) is torsion and the order of U is divisible by all the integers, we have
thatifr —2>1
lim H"%(G/U,N)=0

U<G:NU=N

Theorem 1.1.8. (a) The map o' (G, M) is bijective for all r > 2, and a'(G, M) is bijective
for all torsion-free M. In particular Ext;(M,C) =0 for r > 3.

(b) The map a'(G, M) is bijective for all M if a'(U,Z/mZ) is bijective for all open sub-
groups U of G and all m:

(c) The map a®(G, M) is surjective (respectively bijective) for all finite M if in addition
a®(U,Z/mZ) is surjective (respectively bijective) for all U and all m

Proof. For lemmma 1.1.7, the theorem is true for r > 4- Suppose now that G acts trivially on
M, so M = Z' @ @;Z/m;Z, hence

Ext(M, C) = (@1Extg(Z, C)) D (@iExt;(Z/miZ, C))
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and
H"(G,M) = (@IHP(GrZ))@(@iHr(GIZ/miZ)

Hence the theorem is true for r < 2 and M with trivial action. Moreover, Exts(Z, C) = 0
for lemma 1.1.7 since Z is torsion-free, so we have an exact sequence

Ext%(Z, C) & Ext4(Z, C) — Ext}(Z/mZ, C) — 0

But since Ext*(Z, C) = H2(G, C) = Q/Z is divisible, Ext’(Z/mZ, C) = 0. So the theorem is
true if the action on M is trivial.

Consider now a general M. Consider U a normal open subgroup of G such that MY = M
(it exists since M is finitely generated), and take M, = Homy(Z[G/U], M) = Z[G/U] @z M.
Then the spectral sequence

Extl, ,(Z[G/U], Ext{,(M, C)) = Ext;™ (M., C)

degenerates in degree 2 so Ext;;(M,C) = Homgg/u)(Z[G/U], Exty;(M, C)) = Extg(M,, C).
On the other hand

Extl,(Z[G/U], HY(U, M)) = Ext{, 1(Z[G/U], M)

degenerates in degree 2 so H"(U, M) = Homgg/u)(Z[G/U], H" (U, M)) = Extg(Z[G/U], M)
and for lemma C.8.4

Homg(Z[G/U], M) = Homg(Z, Homz(Z[G/U], M))

Since Z[G/U] is projective and finitely generated as Z-module, Homyz(Z[G/U], _) = $lomz(Z[G/U], _)
is exact and sends injectives to Homg(Z, _)-acyclics, hence

H"(U,M) = Ext;(Z, M,) = H"(G, M)
So we have the exact sequence
O-M—-M,—-M —0

which induces a commutative diagram

Ext (M, C) —— Ext};(M, C) —— Ext};(M, C) —— Ext;"'(My, C)
la'”(G,MQ la'”(U,M) lar(G,M) J/a”i(G,Ml)
H2"(G, M) —— H2"(U,M)* —— H?>"(G,M)* —— H'""(G, My)*

Since a’(U, M), a*(G, M;) and a*(U, M) are isomorphisms, by five lemma a®(G, M) is sur-
jective, and since it holds for all M, also a®(G, M) is surjecitve, hence five lemma shows that
a’(G, M) is an isomorphism. The same argument shows that a*(G, M) is an isomorphism.
If M is torsion free, then M, and M are also torsion free and a' (U, M) is an isomorphism,
hence by the same argument a!(G, M) is an isomorphism, so (a) is proved, and by the same
idea we get in general (b) and (c) O
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1.1.3 Dualities in Galois cohomology
G=1

Let G be isomorphic to Z and C = Z. Then it is generated by an element o and all the open
subgroups of G are generated by 0™. We have an isomorphism H?(U,Z) = HY(U,Q/Z)
induced by the exact sequence

0-Z—-Q—-Q/Z—0
So we define the reciprocity map to be the composite of this isomorphism with

fo(Gi Q/Z

HY(U,Q/Z) = Homy(U, Q/Z)

This is clearly a class formation and depends on the choice of 0. The reciprocity map is
injective but not surjective: it is the inclusion n+— ¢". Since for all U < Z we have m(ZY) =
m(Z) = 0 and H2(U,Z/mZ) = 0 because cd(Z) = 1, so a®(U,Z/mZ) is an isomorphism
for all U and all m. Moreover, (ZU),, = Z/mZ and (Z%),, = Z/mZ, so a'(U,Z/mZ) is
an isomorphism for all U and all m. Hence a"(G, M) is an isomorphism for all finitely
generated M and for all r > 1 and a®(G, M) is an isomorphism for all finite M.

When M is finite, Homz(M,Z) = 0 and for the exact sequence we get Ext;,(M,Z) = 0 for
allr # 1 and

Ext}(M,Z) = Homy (M, Q/Z) =: M*

Hence, using the spectral sequence
HP(G, Ext}(M, Z)) = Ext2™ (M, Z)
we get Extl;(M, Z) = H"~1(G, M*), so we have a perfect pairing
H"(G,M) x H'"(G,M*) - Q/Z

Moreover, if M is finitely generated, then Homg(M, Z) is finitely generated, and if we con-
sider U such that MU = M, then Hochschield-Serre gives us

0— HYG/U,M) — HYG,M) — H'\(U, M)
Then H'(G/U, M) is finite since G/U is finite, and since MY = M
HY(U, M) = Homes(U, M) = Homets(Z, Z! & Z/mZ) = Z/mZ
is also finite, then H'(G, M) is finite, so H(G, M)* is finite and via a! we get Ext!(Z, M) is

finite.
In particular, we can summarize

Theorem 1.1.9. Let G = 7, M a finite G-module, M* = Homyz(M,Q/Z) the Pontryagin
dual, we have a perfect pairing of finite groups

H"(G,M) x H'""(G,M*) - Q/Z
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If now M is finitely generated, if we apply _ ®z Z to the exact sequence of theorem 1.1.8
we get
0 — Homg(M;,Z)" — Homy(M, Z)" — Homg(M, Z)" — Ext' (M, Z)

We have that on the completion a°(G, Z) = recg : 7 — Zisan isomorphism (in fact, it is the
identity), so a°(G, M) is an isomorphism if G acts trivially on M, and we can conclude by the
same way of theorem 1.1.8 that a®(U, M) is an isomorphism using the exact sequence on the
completion, hence a®(G, M) is an isomorphism for all M finitely generated. In particular,
we have

Theorem 1.1.10. Let G = 7, M a finitely generated G-module, M* = Homy(M,Q/Z) the
Pontryagin dual, we have

1. a®(G, M) : Homg(M, Z)" = H?*(G, M)*
2. Exty(M,Z) 5 HY(G, M)* are finite groups
3. Ext4(M,Z) = Homz(MC,Q/Z)

4. Ext;(M,Z) =0 forr >3

Local Fields

Let K be a local field, K a fixed separable closure and Ko the maximal unramified extension.
G = Gal(K/K) the absolute Galois group, I = Gal(K/Ky) the inertia subgroup and C = K .
Then Hochschield-Serre induces the exact sequence

HYI,K™) = 0— HX(G/I,K§) — Ker(H*(G, K ') — HYG/I, H{I,K")) - HYG/I, H{I,LK™)) = 0

and H2(I,K") = 0 for the local class field theory (I , X, 7, Proposition 11]), so the
inflation map is an isomorphism

H2(G/I,K}) = H*(G,K")

Since for every finite unramified extension L/K, if Uy, = O, then H"(Gal(L/K), U) = 0O, so
the exact sequence
0—-U,—-L*—=7Z—0

gives an isomorphism passing to the limit

IIT.V(;/[

H*(G/I,K}) = H(Z,7) =% Q/Z
Where Invg/; is given by the previous example with ¢ = Frob. Then this gives rise to a

class formation ([ , 111, Proposition 1.8]) with reciprocity map recg : K* — G2 injective
with dense image, the norm groups are the open subgroups of G by local class field theory

([ )2

Consider U an open subgroup of G, F = KU the corresponding finite abelian extension of
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K. By local class field theory, F* 2 U9 is the completion morphism, hence we have a
morphism of left exact sequences

0 —— nF~ Fx 2, px
laO(U,Z/mZ) l l
0 m Uab Uab m Uab

Then a°(U, Z/mZ) is the completion morphism, hence it is injective with dense image, and
since n F* = ppy(F) is finite, it is an isomorphism. Moreover, consider the cokernel

Fx M, Fx Fx 0
J J loﬂ (U,ZImZ)
Uab m Uab U;znb 0

We have the following morphism of exact sequences given by the completion

0 0% F* Z 0
0 IgP yab Z 0

The first one is an isomorphism since O = k x 91 is a topological isomorphism, hence Op

. . m . o . . .
is complete. Hence, since Z — 7 is injective, we have an induced exact sequence on the
cokernels

0 —— (Of)m —— (F)M — 5 Z/mZ ————— 0

l Jai (U,Z/mZ) J/

0 —— (I0),, —— (U™),, —— Z/mZ = Z/mZ — 0

And since the two external maps are isomorphisms, we have that o' (U, Z/mZ) are isomor-
phisms for all U and all m hence for theorem 1.1.8

o’ (G, M) : Ext;(M,K”) — H?>™"(G, M)

is an isomorphism for all finitely generated G-modules M for all r > 1, and if M is finite
a®(G, M) also is. If now M has torsion part prime to char(K), since K is divisible by all
primes different from the characteristic of K, we have Ext;(M ,K*) =0 forr > 1, so we
have by the degenerating Ext sequence

H"(G,Homz(M,K")) Z Ext%(M, K )

So we can summarize
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Theorem 1.1.11 (Local Tate Duality). If K is a local field, M a finite Gx-module, MP =
Homyz(M, KX) the Cartier dual, then we have a perfect pairing

H"(Gk, M) x H>"(Gg, MP) - Q/Z

Moreover, if M is finite with order prime to char(K) then Extg(M,Rx) and H"(G, M) are
finite

Proof. The only assertion who needs a proof is the finiteness:
We know by Kummer exact sequence that

Q"

0 —— HOG,pn(K")) = pn(K*) K~

KXT

L HYG,pn(K*)) ———— HYG, K )=0 —— HYG,K') =0 j

L H%(G,pp(K') ——— H?*(G,K') = Q/Z —— H?*G,K") = Q/Z
Hence we get
e HYG, po(K™)) = K*/K*™
o HXG,mn(K")) = Lz2/2
e H'(G,pn(K*)) =0 forr > 2 (cd(G) < 2)

In particular, they are all finite.

Consider now a finite extension L/K which contains all the m™" toots of 1, with m dividing

the order of M and such that Gal(K/L) acts trivially on M, so M as a Gal(K/L)-module

is isomorphic to a finite sum of copies of p,, so H"(Gal(K/L), M) is finite. We can use
Hochschield-Serre’s seven-terms exact sequence, if N = Ker(H2(G, M) — H%(Gal(K/L), M)CGalL/K)).

0 —— HYGal(L/K),M) —— HYG,M) —— HY(Gal(K/L), M)Cal(L/K)

L H2(Gal(L/K), M) N HY(Gal(L/K), H'(Gal(K/L), M))

0 N H%(G,M) —— H2%(Gal(K/L), M)Calll/iK) __ 0

So H'(G, M) and H'(G, M) are finite since Gal(L/K) is a finite group, and by duality Ext};(M, K ")
is finite. O

We can enounce local Tate duality in its general form:
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Theorem 1.1.12. Let M be a finitely generated G-module whose forsion subgroup has
order prime to char(K). Then for r > 1 we have isomorphisms

H"(G,MP) - H?>™"(G, M)*
and an isomorphism of profinite groups

H°(G, MP)" — H?(G, M)*
Moreover, H'(G, M) and H'(G, MP) are finite groups.

Proof. To prove the finiteness, by thei)revious result we can assume M torsion free. Let L/K
be a finite extension such that Gal(K/L) acts trivially on M. Then the inflation-restirction
exact sequence

0 — HYGal(L/K), M) —» HY(G, M) — Hi(Gal(R/L),M)Gaz(L/K)

And since H'(Gal(K/L), M) = Hom,ts(Gal(K/L), M) = 0 since M = Z™ and G is compact.
This shows that H(G, M) is finite, and by duality H'(G, MP) is finite.
Now, we have that R

aO(G,Z) =recg:K*— G

is an isomorphism (recg is injective with dense image), hence a’(G, M) is an isomorphism
if G acts trivially on M, so we can conclude by the same way as theorem 1.1.10. O
Henselian fields

Let R be an Henselian DVR with finite residue ﬁeld* and let K be its fraction field. The
valuation lifts uniquely to K and so Gal(K/K) = Gal(K/K). So we have:

Proposition 1.1.13. There is a canonical isomorphism invy : Br(K) = H?(Gal(Ko/K), K§) =
Q/Z which respects the class formation axiom:

Sketch of proof. First, we need to show that Br(K{) = 0, then we have the first isomorphism
using the exact sequence

0 — H?(G(Ko/K), K§) — Br(K) — Br(Ko)
Using the split exact sequence of Gal(Ky/K)-modules
0—-Ry—-K;—=Z—0

shows that H2(Gal(Ko/K), K§) — H2(Gal(Ko/K),Z) is surjective, and by some trick we
can show that its kernel is zero. Since H?(Gal(Ko/K),Z) = H'(Gal(Ko/K),Q/Z) = Q/Z
canonically, we have the isomorphism.

If now F/K is a finite separable extension, Rr is again an Henselian DV R with finite residue
field, and by definition one has

invr(Res(a)) = [F : Klinvk(a)
For the details, see [ , Ch. I, Appendix A]
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. 77X . . . .
So again (Gk, K ") is a class formation, hence we have a reciprocity law
recg: K* — G
whose kernel is (1} /kinite separable NL/KL*, hence we have an isomorphism

lim KX/NL/K = Gab

If now we ask R to be also excellent, i.e. such that the completion K/K is separable over
K, and that its residue field is finite. (Notice that the Henselization of a local ring at a prime
in a global field satisfies this hypothesis).

Lemma 1.1.14. (i) Every finite separable extension of K is of the form F for a finite
separable extension F/K. Moreover [F : K| = [F : K]

(ii) K is algebraically closed in K.

Proof. (i) It follows from Krasner’s Lemma: take F = R[a] and let f, be its minimal
polynomial, consider f,(T) a sequence in K[T] converging to fo(T) and let F = K[f] for
B a root of f, for n big enough

(ii) Take a € K integral over R. Take f its minimal polynomial over R, since Ris a
DVR, hence integrally closed, f has a root in R, and again from Krasner’'s Lemma we
conclude that f has a root in R, hence a € R.

Remark 1.1.15. From the separability and (ii), we conclude that K is linearly disjoint from
K9 (see [ , [II, Thm 2])

Using this result, one can see that
NF* = NF* n K*
So we can conclude from the existence theorem of local class field theory that

Theorem 1.1.16 (Existence theorem for excellent Henselian DVR with finite residue field).
The norm subgroups of K* are exactly the open subgroups of K* of finite index

Hence a(G, Z) defines again an isomorphism
a’G,z): (K" — G
We get that a°(G, Z) = rec is again an isomorphism and a®(G, Z/mZ) = 0 is an isomorphism
as in the previous examples. a' So we can now generalize local Tate duality:

Theorem 1.1.17. Let K is the fraction field of an excellent Henselian DVR with finite
residue field, M a finite Gg-module whose forsion subgroup is prime to char(K), MP =
Homyz(M, KX) the Cartier dual. Then for r > 1 we have isomorphisms

H"(G,MP) — H?>7"(G, M)*

and an isomorphism
H°(G, MPY* — H?(G, M)*

Moreover, H'(G, M) and H'(G, MP) are finite groups.
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Proof. We only need to show that for every m prime to char(K), a®(U, Z/mZ) and o' (U, Z/mZ)
are isomorphisms for all U and all m. So take F the finite extension of K corresponding
to U. Rr is again an Henselian local ring, so we have a diagram

0 R} F> 7 0
0 — R*p yab 7 0

Again, we have as in theorem 1.1.12 that
m(Rp) — m(RF)
is injective with dense image, but (Rj)m is finite, hence it is an isomorphism, and we con-
clude that a®(U, Z/mZ) : nF* — U is an isomorphism. Then, since Ry is divisible by all
primes # char(k) because it is Henselian, we have that R}, — R}, is an isomorphism, so
a'(U,Z/mZ) : F} — U2 is an isomorphism for all m prime to char(k), and we conclude
by the same way as theorem 1.1.12 O
In particular, we have that:
Theorem 1.1.18 (Generalized local Tate duality). If M is finite, we have a perfect pairing
H"(Gk, M) x H*™"(Gk, MP) - Q/Z
Moreover, Ext'(M,K ") and H"(G, M) are finite

Archimedean fields

We have a duality theorem for K = R:
Theorem 1.1.19. Let G = Gal(C/R). For every finitely generated module M with dual
MP = Hom(M, C*), we have a nondegenerate pairing of finite groups:
A7(G, MP) x H2"(G, M) — H2(G,C*) = %Z/Z
Proof. Let M be finite, then G acts only on the 2-primary component of M, so we can
suppose M 2-primary, and using the exact sequence
0—-2/22Z—M-—-M —0

using induction on the order of M we need to prove it for M = Z/27Z with trivial action.
Then MP = 7/27 and since G is cyclic we have

0. HY(G, Z/2Z) = Z/2Z/Ncr(ZI2Z) = Z./12Z

1. HY(G, Z/2Z) = Hom(Z/2Z, 7./27) = 7.127.

If M = Z, then Hom(Z, C*) = C*, so
1. HY%(G,Z) = ZIN¢r(Z) = Z/2Z, HY(G,C*) = R*/Ng/g(C*) = Z/2Z
2. HY(G,Z) = Hom(Z/2Z,Z) = 0, H(G,C*) = 0 for Hilbert 90.

And if M = Z[G] every group is 0 (Z[G] is Z[G]-projective).
Combining all this we have the result. O
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1.2 Global Tate duality

Consider K a global field, S a non empty set of places containing all the nonarchimedean
if k is a number field. If F/K is a finite extension, we will denote by Sr the set of places
lying over S, and if the context is clear just by S.

Ks would be the maximal subextension of K which is ramified only over S, which is Galois,
and let Gg be its Galois group.

Let now Og be the ring of S-integers:

Os:=()Oy = {facK:v(a)>0forallv¢S)
v¢S

For each place, choose an embedding k — k, and an isomorphism of G, = Gal(k,/ky) to
the decomposition subgroup of G.

Consider P a set of prime numbers ¢ such that for all n > divides the degree of Kg over
K. If K = k(X) is a function field, then since kK C Ks, then P is the set of all primes. It is
known ([ , Cor 5.2]) that if S contains all the places over at least two primes of Q, then
P is the set of all primes, but in general we have no idea how large P is.

Let F/K be a finite extension contained in Ks. Then define:

e I the IdAile group of F, Ir s the S-idAile group ]_[VOE s Fy', with the canonical inclusion
Ir s — I given by

(ay) elps e ay=1forallv¢sS

Or,s the ring of S-integers of F, i.e. mv¢s Oy (the normal closure of Ok s in F) and
Ers:= Of g the S-units and Clf s its class group.

Crs:=Ips/Ers the S-idAfle class group

Urs:= ]—[W¢S Oy with the canonical inclusion Up s — Ip

(ay) eUps e ay=1forallve Sanday, € O forallv ¢ S

e Cs(F) = Cr/Ufs

Taking the direct limit over F we can define Is, Os, Es, Cs, Us.

Remark 1.2.1. If S contains all primes, then Ks = K, Gs = Gk and P contains all the primes.
The object just defined are respectively Ir, F, F*, Cr and 1.

We know by [ , VIT] (see Chapter A) that if F is a global field, then (Gr, Cr) is a class
formation. We want to generalize this to (Gs, Cs), so we need to generalize theorem 1.1.8.
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1.2.1 P-class formation

Let P be a set of prime numbers, G a profinite group, C a G-module. Then (G, C) is a
P-class formation if for all open subgroups U of G, H'(U,C) = 0 and there is a family of
monomorphisms

invy : H*(U, C)— Q/Z

such that:

1. For all pairs of subgroups V < U < G with [U : V]
commutes:

n the following diagram

H2(U,C) —— H2(V,C)

linv U linvv

Q/z —2—— Q/Z

2. If V is normal in U, the map
. 9 v 1
invyyy : H/(U/V.CY) — HZ/Z

is an isomorphism

3. For all ¢ € P, then the map on the ¢-primary components invy : H>(U, C)(¢) — (Q/Z)(¥)
is an isomorphism

Since, if M is finitely generated, Ext;(M, N) is torsion for r > 1, we can apply the same
method as for the class formation to the ¢-primary components and get the theorem:

Theorem 1.2.2. Let (G,C) be a P-class formation, £ € P and M a finitely generated
G-module.

(@) The map o’ (G, M)(¢) : Ext;(M,N)(¢) — H?>7"(G,M)*(¢) is an isomorphism for r > 2
and if M is torsion free, also for r = 1.

(b) The map o' (G, M)(¢) is an isomorphism if a'(U,Z/¢"Z)(¢) is an isomorphism for all
U open subgroup and n € N.

(c) The map a®(G, M) is epi (resp. an isomorphism) for all M finite ¢-primary group if
in addiction a®(U,Z/¢"7Z) is epi (resp. an isomorphism) for all U open subgroup and
neN.

Consider Cs(F) = Cp/Ufps, we want to show that (Gs, Cs) is a P-class formation, and

moreover that Cgal(KS/F) = Cs(F). We have that if S contains all the primes then (G, C) is

a class formation, so a P class formation, and Cs(F) = Cp.

Lemma 1.2.3. There is an exact sequence

0— Crs— Cs(F)— Clps— 0
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Proof. Notice that in Ir we have Urs N F* = {1} where F* is taken with the diagonal
embedding, we have Ir s N (F*Urs) = Er s, hence we have an inclusion Ur s < Cr and the
inclusion Iy s < Ir passes to the quotient by Er s, so we have an inclusion Cr s < Cr/Ur s.
Hence the cokernel is
Ip/(F*Uf,slF,s) = (@ Z)/F* =: Clps
v¢S
O

Remark 1.2.4. If S is the complementary of finitely many places, then Clrs = 1 for the
Chinese reminder theorem (it is a Dedekind domain with finitely many prime ideals) and
Cr,s — Cg(F) is an isomorphism.

Remark 1.2.5. Since (G, Cr) is a class formation, if Hs = Gk, then (Gs, Cgs) is a P-class
formation (P is constructed to do so).

Proposition 1.2.6. There is a canonical exact sequence
0—>Us—>C§S—>C5—>O

Proof. Remark that since for Hilbert 90 H'(G(F;/F), F;*) = 0, we have for each finite exten-
sion Fi/F the exact sequence

0—-F—1Ip—Cp—0

Fyi/F) Fy1/F)

and since (F;)¢(FV/F) = F* and ]Ig( = I, then Cp = Cg F1/F) 56 in particular
lim Cr = Cy*
Ks/F/K

If S is the complement of finitely many places, by previous lemma we have an isomorphism
Cr,s = Cr/Up s, so passing to the filtered colimit over F we have Cs = C%S/ Us, which gives
the exact sequence.

In general, to reduce to this case we need to show that lim - Clps = 0.
— Ks/FIK

Consider L/F the maximal unramified extension of K such that every non-archimedean
place of S splits completely, and consider F’ the maximal abelian subextension of L/F.
Then F'/F is the maximal abelian extension of F which splits completely on the primes of
S, so F C Hr where Hr is the Hilbert class field, so F’/F is finite.

By class field theory ([ , XIT]) and since Gal(L/F)®® = Gal(F'/F) since the commutator

[Gal(L/F), Gal(L/F)] = Gal(L/F’)

We have a commutative diagram

Clr,s —=— Gal(L/F)®® =—— Gal(F'/F)

l lv

Clp s —— Gal(L/F')ab

Where V is the transfer map (see [ , XIIL,2]). Then we have a theorem
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Theorem 1.2.7 (Principal ideal theorem). Let U be a group whose commutator [U, U] is
of finite index and finitely generated. Then the transfer map

V:U/[U U] — [U,U]/U,U]|U, U]
is zero
Proof. | , XIIL,4]

Since here U = Gal(L/F) and [U,U] = Gal(L/F’), [U : [U,U]] = [F' : F] = #CI(F) <
Q. O

Lemma 1.2.8. H"(Gs,Us) =0 forr > 1

Proof. By definition
H"(Gs, Us) = lim H"(Gal(F/K), [ | 0;)
F w¢Sr

And since Gal(F/K) is a finite group, we can take out the product® and

lim [ | (Gal(F/K),[ |Ox)

? v¢Sk w|v
And since for all v Gal(F/K) = ]_[W|V Gal(Fy/Ky) and the only factor that acts on Oy is
Gal(Fy/Ky), we have

[ | H"(Gal(F/K),] 03) = | | H"(Gal(Fw/Ky), O;)
v¢SK wlv vESK
w|v
Then since w|v is unramified, O, x 772 = F, and for the valuation exact sequence

0= Oy = (Oy)CalE/Ke) _y gx  (FX)CallFWIKY) _, 77 _ (nZ)GallFulKs) _

HY(Gal(Fy/Ky), Ow) = 0. And since it is unramified, Gal(F,,/Ky) is finite cyclic, so it is
enough to prove that HO(Gal(FW/KV),OVXV) = 0, and this is true since N /k, : Ow — Oy is
surjective O

Corollary 1.2.9. The exact sequence of proposition 1.2.6 is again exact applying (_)°s,
since C% = Cg and Ugs = Uk,s, we have Cgs /[Ugs = Cs(K) so it gives isomorphisms

Cs(K) = ¢
H"(Gs, Cf*) = H"(Gs, Cs) (1.2)

In particular (Gs, Cs) is a P class formation.

SIf G is a discrete group, {M; }; a family of G-modules, then

H'(G,| [ M) = Extlyg(Z, | [Mi) = | | Extyyg (2, Mi) = [ |H'(G, M)
I I I I
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Definition 1.2.10. We denote Ds(F) and Dr the connected components of Cs(F) and Cr.

Remark 1.2.11. If F is a function field, then since every nonarchimedean field is totally
disconnected Ds(F) = Dr = {1}. If F is a number fields, then one has that Ds(K) is the
closure of the image of Dk in Cs(K), and since Us g is compact the map is closed, so
Ds(F) = DrUs,r/UsF.

Lemma 1.2.12. If K is a number field, then Ds(K) is divisible and there is an exact

sequence
0 — Ds(K) — Cs(F) =5 G2 -0

Proof. 1f S contains all the primes, then the exact sequence is the reciprocity law of global
class field theory (see | ]), and Dk is divisible since

Dk = R x (R/Z)® x S*+5!

where r and 2s are the real and complex embeddings of K and S = (R x Z) /7. is the solenoid,
which are all divisible groups.

In the general case, Ds(K) is divisible since Dy is, and quotients of divisible are divisible.
The image of Us x in G?? is the subgroup fixing K?° n Ks, hence it is the kernel of G —
ng. So we have a commutative diagram

Uks —— Gal(K/K® 0 Kg) —— 0

! !

0 Dy Ck Gab 0
DK,S —_— CK,S ng 0
and we conclude by snake lemma. O

Remark 1.2.13. This says that the reiprocity map induces a® = ,rec(Gs,Z/nZ) and o' =
rec(Gs, Z/nZ),, which are respectively epi and iso if n = {™ with £ € P

Theorem 1.2.14. Let M be a finitely generated Gs-module and ¢ € P.

(a) The map
a"(Gs, M) : Exty (M, Cs) — H*™"(Gs, M)*

is an isomorphism for allr > 1
(b) If K is a function field, then there is an isomorphism
Homg,(M, Cs)" = H*(Gs, M)*

Where A is the profinite completion,
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Proof: K Number field. We have that a!(Gs, Z/¢™Z) is iso and a®(Gs, Z/¢™7Z) is epi, so (a)
follows from theorem 1.2.2, and also a®(Gs, M)(¢) is epi if M is finite.
O

Proof: K Function field. If K is a function field, then P contains all primes and rec : Cx —
G2 is injective with dense image, and there is an exact sequence

0— Cg— G® L 7/7 0
Using the same argument as in lemma 1.2.12, we have the exact sequence
0— Cs(K) =5 ng — Z|Z— 0

And since Z/7Z is uniquely divisibile, a®(Gs, Z/¢™Z) = prec and a®(Gs, Z/{™7Z) = rec are
isomorphisms. O

1.3 Tate-Poitou

Let us fix M a finitely generated Gs-module whose order of the torsion group is a unit in
Os.

Let v be a place of K and choose an embedding K — K,, G, = Gal(K,/K,) the de-
composition subgroup and if v is nonarchimedean, let k(v) be the residue field and g, =

Gal(k(v)/k(v)) = Gy/Iy. The embedding gives a canonical map Gy, — Gk which induces by
the quotient a canonical map G, — Gs, which gives a map

H"(Gs, M) — H"(Gy, M)
We will consider

H" (Ko, M) = H"(Gy, M) if v is non archimedean
v B ?IP(GV,M) if v is archimedean

In particular HO(R, M) = MSaC/R)/N-rM and HO(C, M) = 0.
If v is non archimedean and M is unramified (ie. M! = M), we have a canonical map
H"(gy, M) — H"(G,, M) and we will write H},,(Ky, M) the image of this map, so by definition
H (K,,M) = H°K,, M) and for the inflation-restriction exact sequence H! (K,, M) =
H'(gy,, M), and if M is torsion since cd(gy) < 1 we have H’ (K, M) = 0 for r > 1.
Since a finitely generated Gs-module is ramified only on finitely many places of S, we can
define

DPS(K, M) = l_[ Han(KeM)pgr (g M)

veS

with the restricted product topology.

Lemma 1.3.1. The image of

H"(Gs, M) — [ | H"(Ky, M)

veS

is contained in Pg(K, M)
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Proof. If ¥ € H"(Gs, M), since H"(Gs, M) = lim H"(Gs/U, MY), then there is a finite exten-

sion Ks/L/K such that v € H"(Gal(L/K), M). So since if w|v is unramified Gal(L,/K,) =
Gal(k(w)/k(v)), we have y € H2, (K, M). O

So we have a map " : H"(Gs, M) — Pg(K, M)

Lemma 1.3.2. If M is finite, the inverse image of every compact subset of P!(Gs, M)
under B! is finite.

Proof. Consider U = Gal(L/K) C Gs open normal such that MY = M, then

0 — HY“WU,M) — HY(Gs,M) — HYG/U,M) —— 0

l | |

0 —— PYL,M) —— PYK,M) —— [['HYG/U,M) —— 0

Since H'(G/U, M) is finite, every subset is finite. So it is enough to prove it if Gs acts trivially
on M.

For every V compact neighborhood of 1 there exists T C S such that S\ T is finite and V
is contained in

P(T) = | | H'Kv. M) x [ | HL,(Ky, M)
veS\T veS
So it is enough to show that the inverse image of P(T) is finite. Let f ¢ (B!)~'(P(T)) C
H'(Gs, M) = Homgyp(Gs, M), then f is by defintion such that Kker ") is unramified at all

places v € T. So since [ngr( : K] = #(Gs/Ker(f)), we have [ngr( : K] divides #M, and
it is unramified outside the finite set S\ T. Hence by Hermite’s theorem there are only
finitely many extension like this, so (8!)~'(P(T)) is finite. O

We define 1115 = Ker(B"). In particular, if M is a finite G-module, since P}(K, M) is
locally compact H_[g is finite.

Remark 1.3.3. If M is a finite Gs-module, then MP = Hom(M,K}) = Hom(M, Es) is

again a finite Gs-module and if #M is invertible in Ogs, then MP = Hom(M, FX) =
Hom(M, o(K)) = Hom(M,Q/Z), so MPP is canonically isomorphic to M for Pontryagin
duality. So by the local results we can conclude that

P5(K, M) = Pg™" (K, MP)*
is a topological isomorphism. Then, by taking the dual map of f>~", we have continuous
maps

7' (K, MP) : PL(K, MP) — H?"(Gs, M)*

Theorem 1.3.4. Let M be a finite Gs-module whose order is a unit in Ok s. Then:
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1. The map BA(K, M) is injective and y*(K, MP) is surjective, for r = 0,1,2 we have
isomorphisms:
Im(B") = Ker(y")

such that there is an exact sequence of locally compact groups:

0 0
0 — H(Gs, M) —— PYK, M) —2— H%(Gs, MP)*

H'(Gs, MP)* +—— PL(K, M) o H(Gs, M)
l v
2 2
H?(Gs, M) —2 s P2(K, M) 7 H%Gs, MP)* —— 0

(Tate-Poitou exact sequence 1.3)
with the following topological description:

finite compact compact
compact locally compact discrete
discrete discrete finite

2. Forr > 3, B" is a bijection

H"(Gs,M)— | | H"(Ky, M)

v real

In particular they are all finite.

1.3.1 Proof of the main theorem

Let M be a finitely generated Gs-module. We will define with the same notation M4 three
different objects:

e When M is regarded as a Gs module, then M = Homg(M, Es)

e If M is not ramified on v, M can be regarded as a g,-module, so in this case M? =
Homyg, (M, O"*), where O¢" is the ring of integers of the maximal unramified exten-
sion of K.

e When M is regarded as a G, module, M9 = HomGV(M,Kivx)

Lemma 1.3.5. Let M be a finitely generated Gs-module where #Mjy,, is a unit in Ok s.
Then

(a) For all r > 0, Ext; (M, Es) = H"(Gs, M9)

(b) Forv ¢ S, H"(g,, M4) = Exty (M, 03"*) and for r > 2 they are both zero.
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Proof. (a) Since Es is divisible by all integers that are units in Ok s, we have &xt} (M, Es) =
Ext;(M,Es) = 0 for r > 1, hence the result comes from the degenerating spectral

sequence
HP(Gs, 8xt}(M, Es)) = Ext};. !(M, Es)

(b) Since again Of"* is divisible by all the integers dividing #Mj,,, the equality comes again
from the spectral sequence.
Now Oy™* is cohomologically trivial, so for a well-known theorem ([ , IX, Ag7,
TheorAime 11]) we have an injective resolution

00 1t 51250

In particular Ext; (M,0y"*) = 0 for all M and all r > 2.

Lemma 1.3.6. If now either M is finite or S omits finitely many places, then

Homg, (M, Ts) = | | H(Gy, MY)

veS

(which is Pg(K, M) if K is a function field, since K, is always non archimedean and we
don’t have Tate cohomology groups involved), and for r > 1

Extg (M, Is) = P§(K, M9)

Proof. Consider T C S finite such that T contains all the archimedean places and all the
nonarchimedean places where M is ramified (they are finitely many), and the order of
Miors is invertible in Og 7. Consider the subgroup of the idAlle group I s:

HF,SQT = [_1 F‘; X ﬂ (9:;

weT weS\T
Then
]13 = lim lim HF,SQT
e e
TCS FCKr
opportune

So in particular
F.T

And since Ext commute with the products, for Shaphiro’s Lemma:

ExtGayr/i)(M. Ir,so1) = H ExtGaur, k) (M, Fy) x l_l ExtGaur, /x,) (M, OF,)
veT veS\T

Consider F big enough such that K" C F,. Since now if I, is the inertia group of
Gal(Fy/Ky), we have H" (I, Of,) = 0 so the degenerating spectral sequence

Extd (M, HU(I,, OF )) = Extg;‘;’(Fw/KV) (M, O )
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gives the isomorphism
ExtGaur, k) (M, OF,) = Extg, (M, 0J™) = HP(gy, M)

Hence combining this we have

weT weS\T

Considering now F/K finite such that Gf, acts trivially on M, so
Homga(r, /x,) (M, Fy;)) = Homg, (M, K,)
and looking at the spectral sequence
EX®oyr, k., (M, HU(GF,, Ky ) = Ext3 (M, Ky)
the five-term exact sequence and Hilbert 90 (H 1(GFW,F:) = 0) give
EXtGair, x,) (M. Fu)) = Extg, (M, Ky)
So for r = 0,1, since Ext}; (M, K,) = H"(G,, M%) we have

Extg, (M, Ts) = im(] [ H"(Gy, M%) x | | H"(gv, M%)
—> veT veS\T

which gives the result for r = 0, 1.
For r > 2, H"(g,, M%) = 0, so since T is finite we have

Extg, (M, Is) = lim (€D ExtGaye, k) (M, Fi)) = @0 lim ExtGoyp, k) (M. F3)
RIF/K VES VES RIFIK

If v is archimedean, it is trivial that ExtG,r, k) (M, Fy) = Extgv)(M,KX) = H"(Gy, M9), so
suppose now v non archimedean.

Claim If S contains almost all primes, limK K F., = K,.
If we fix an extension K, C L, of degree n gesnerated by fw, for all the places u ¢ S there

is a unique unramified extension L, /K, of degree n generated by the root of a polynomial
fu € Ky[X], and the weak approximation theorem gives f € K[X] such that |f — f,|4 < € for
all u ¢ S and for u = v, and for Krasner’s lemma if F is generated by a root of f then there
exists u’|u such that Fy = L, for all u ¢ S and for u = w, i.e. for all v € S and all L/K,
finite separable there exists Ks/F/K such that L = F,, for w|v. So in this case we conclude

since
lim Ext{qyr, /i, (M. Fiy)) = Extl; (M, K, ")) = H"(Gy, M9)
F
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Claim If M is finite and ¢ divides the order of M, then for all v € S finite and for all N
there is Ks/F/K such that ¢V|[Fy : K,].

If K = k(X) is a function field, this is trivial: it is enough to take the unique extension of k
of degree ¢V,

If K is a number field, then S contains all the places over ¢ since ¢ is a unit in Og,s = (1,45 Ov,
and for all n consider F = K(¢n) C Ks, so Ky (€pm) C Fy, so let p be the rational prime such
that v|p, we have a diamond

Ky (Cem)
/ \
Ky Q
\ i /
p

So if € # p Qp(Cm) is unramified over Q, of degree d dividing ¢*~1(¢ — 1), and d — oo if
n — oo, and if £ = p Qp(&n) is totally ramified of degree m-1(¢ — 1) so for n >> 0 since
[Ky : Qp] is fixed €V|[Fy : Ky].

So if v is non archimedean we have

p (C(’")

Ff ifr=0
H'(Gr,, K, )=<4Q/Z ifr=2
0 otherwise
And by the claim:
lim H2(Gr,,, Ky )(€) = im(Q/Z(€) = Q/z(e)) = 0

F F

And since the ¢-primary component of an abelian group A is Homy(Z,, A) and it is a mor-
phism of Gal(F,,/Ky)-modules since the action of Gal(F,,/K,) must respect the order of the
elements.

Since now if M is finite we have

Homgqr, /k,) (M, _) = @ Homgau(r, /k,) (M, (L)(£))
oM

And since Q/Z is divisible, RHomy,(Zy, Q/Z) = Homy(Ze, Q/Z) = Q/Z(¢) and so there is a
quasi isomorphism

RHomgq(r, /k,)(M,Q/Z) = EB RHomgqyr, /k,)(M, Q/Z(¢))
oM

Hence we have a direct system of spectral sequences

ExtGar, ik, (M, HY(GF,, Ky ) = Extgr (MK
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which shows that

lim Ext{sqr, /i, (M. Fiy) = ExtG, (M, K, ") = H"(Gy, M)
F

and this concludes the proof. O

Conclusion. So assuming now that M is finite, we have the long exact sequence from the
triangle given by lemma 1.2.3 and by definition of Cr s:

-+ — Extfy (MP, Es) — Extf (MP, Is) — Extg (MP, Cs) — - -

Recall that 92 is the dual of H°(Gs, M) — P2(K, M), which is mono, so it is epi, hence by
the previous lemmas we have an exact sequence

0 — H%Gs, M) — [],es HY(K,, M) —— Homg,(MP, Cs)

!

H'(Gs, MP)* +—— PL(K, M) «———— H'(Gs, M)
l v
2 2
H(Gs, M) —F—— PYK, M) — 72— H(Gs, MP)* —— 0

And for r > 3 we have H"(Gs, M) = @Pé}al H"(Gy, M) So if K is a function field Pg(K, M) =

[T,cs HY(Ky, M) and for theorem 1.2.14, part (b), Homg, (MP, Cs)" = H?(Gs, MP)*, and since
MP is finite H?(Gs, MP)* is finite, hence Homg,(MP, Cs) is complete, so we conclude. If K
is a number field, consider that exact sequence for the finite module MP:

H'(Gs, M)* «—— PL(K, MP)
l Y
2, 2
H2(Gs, MP) —£— P2(K, MP) —2— HO(Gs, M)* —— 0
and by dualizing it

1
H'(Gs, M) —2— PL(K, M)

I

H?(Gs, MP)* «—— P(K,M) o H%Gs, M) +—— 0
Y

So we conclude. O
Corollary 1.3.7. There is a canonical perfect pairing of finite groups
II5(K, M) x I4(K, MP) - Q/z

In particular 1%(K, M) is finite.



1.3. TATE-POITOU 27

Proof. By definition I11%4(K, MP) = ker(8? : H%(Gs, MP) — P%(K, MP)), so since we have
B2(K, MP)* = 49(K, M) So by the main theorem:

I1%(K, MP)* = coker(y°) = ker(B!) = I (K, MP)

Corollary 1.3.8. With the same hypothesis of the theorem, if S is finite then H"(Gs, M)
is finite.

Proof. Pg(K, M) is finite in this case because if v € S; then H"(Gy, M) is finite for local
Tate duality, and if v € S, H}(Gy, M) is finite since G, is finite, so H°(Gs, M) is finite, and
H'(Gs, M) and H?(Gs, M) are finite because IIT5(K, M) and I1%(K, M) are.



Chapter 2

Proper Base Change

The aim of this chapter will be to prove the following theorem:

Theorem 2.0.1. Let X J, Y be a proper morphism of schemes. Let Y’ 9 vbea morphism
of schemes. Set X' = X xy Y’ and consider the cartesian diagram

x 9, x

o

v 9,y

Then for any F torsion sheaf on X¢¢ the canonical morphism gives an isomorphism of
sheaves over Y’
g*RPf.F = RPf,g*F

We notice that we have the following:

Corollary 2.0.2. Let X EN S a proper morphism and F an abelian torsion sheaf over X,
and let s — S be a geometric point, X the fiber X xs Spec(k(s)). Then, ¥ q > 0 we have

(RfF)s = HY(X;, F)
Proof. Take V' = s

Corollary 2.0.3. Let (A,0,k) be a strictly local ring, S = Spec(A), X L sa proper
morphism, Xy the closed fiber of f (i.e. the fiber over the only closed point, i.e. X xg
Spec(k)). Then VY q > 0 we have

HY(X, F) = HY(X, F)

Proof. Follows from the previous corollary and because (RIf,F)s = HY(X,F) since A is
strictly local.

Proposition 2.0.4. Corollary 2.0.3 implies theorem 2.0.1

28
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Proof. Since being equal is a local property, we can suppose Y = Spec(A) and Y’ = Spec(A’)
affine, and by passing to the limit we can suppose Y’ of finite type over V.
Consider y' € V' a geometric point closed in g~'g(y’). Then the theorem is true if and only
if

(9*RPfFly = (RPf.g"F)y
We have

(g"RPf«F)y = (RPfiF) 0 = HP(X xy Spec(O3,1), F)
(RPf,g"*F)y = HP(X xy Spec(O3},,), F)

Applying corollary 2.0.3 to X xvy Spec(@@’}g(y,) — Spec(@%’}g( , and X xy Spec(@ff},y, —

y/
Spec(@f,’?ly, we have

HP (X xy Spec(03y,), F) = HP(X xy Spec(k(g(y"))), F)

(RPf,g"™F)y = HP(X xy Spec(k(y’)), F)

By hypothesis, k(y’) is algebraic over k(g(y’)) since it is closed in g~'g(y’), so k(y’
k(g(y')

1

So in the rest of the chapter | will prove corollary 2.0.3 only in the context where A is
noetherian: this will imply theorem 2.0.1 when Y and Y’ are locally noetherian.

21 Step1

Throughout this section, I will prove the proper base change for g = 0 or 1, and F = Z/nZ.
For g = 0O, the theorem follows from:

Proposition 2.1.1 (Zariski Connection Theorem). Let (A, m) be an henselian Noetherian

ring and S = Spec(A). Let X ERN S a proper morphism, Xy the closed fiber. Then we have
a bijection between the connected components of X and of Xy

Proof. Since X and Xy are noetherian schemes, we have that the connected components
are all and only the open and closed subsets, which are in bijection with the idempotents
of I'(X, Ox). So the goal is to show that the canonical map

IdemT' (X, Ox) — IdemI (Xo, Ox,)

is bijective.
We have the following lemma:

Theorem. Let X — Y a proper morphism, Y a Noetherian scheme. Then ¥V F coherent
Ox-modules RPf.F is a coherent Oy-module

Proof. | , 11.3.2.1]
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It follows that I'(X, Ox) is a finite A-algebra.
For all n one consider the formal completion of X with respect to m
Xn = X xa Spec(A/m™*1)

In particular [‘mx) =T(X, Og) the m-adic completion.
Recall that A is Henselian if and only if all finite A-algebras are finite products of local rings
([Sta, Tag 04GG]), whose only idempotents are uples with 0 and 1, hence the canonical map

—

Idem(T'(X, Ox)) — Idem(I'(X, Ox))

is bijective.
We have again the following theorem:

Theorem. If X 4 Y is a proper morphism of Noetherian schemes Y’ a closed subscheme
of ¥V, X' = -1V defined by the sheaf of Ox-ideals ¥, U the formal completion of Y with
respect to V', X the formal completion of X with respect to X', f the natural map induced
on the completions, F, = F/**'F, [ the extension of F to X, then

e RP f*ﬁ’ is a coherent O module.

e YV n there is a commutative diagram

Rf.F —"— RL,(F)

| %

lim R"“f.F}
—k
and pp, ¢n and P, are fopological isomorphisms V n

Proof. | , L.4.1]

In particular the canonical map

—

(X, Ox) = im I'(X, Ox,)
is an isomorphism, hence
Idem(I'(X, Ox)) — li;n Idem(I"(Xg, Ox,))
Is bijective. Since X} and Xy have the same underlying topological space, we have that
Idem(T'(Xg, Ox,)) — Idem(I'(Xo, Ox,))
is bijective V k, so we conclude. O
In order to conclude for q = 1 and F = Z/nZ, recall that
HY(X,Z/nZ) = {n-torsors over X} = {finite Altale coverings with group Z/nZ}

So the proof for g = 1 is given by
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Proposition 2.1.2. Let A be a local henselian noetherian ring, S = Spec(A). Let X L sa
proper morphism and Xy the closed fiber. Then the functor

FAIt(X) — FAI't(Xo), U U xsXo
Is an equivalence of categories.

Proof. Fully Faithfulness Let X — X and X” — X two finite Altale coverings. Then any
X-morphism and any Xg-morphism is determined by the graph

Fo:X — X xx X"
Iﬂ(bo:X(/)_’X(l) % Xo XE)/

They are finite Altale and a closed immersions, hence their image is an open and closed
subset, and by proposition 2.1.1 we conclude.

Essential Surjectivity Consider X, — X a finite Altale covering, we need to lift it to X’ — X
finite Altale covering. We need two lemmas

Theorem. Let S be a scheme. Let Sy C S be a closed subscheme with the same
underlying topological space. The functor

X Xo = S() XS X
defines an equivalence of categories

{schemesXAltale over S} «» {schemesXoAltale overS}

Proof. [Sta, Tag 039R]

Theorem. Let (f, fo) : (X, Xo) — (Y, Yo) be a morphism of thickenings. Assume f and fy
are locally of finite type and X = Y xy, Xo. Then f is finite if and only if fo is finite

Proof. [Sta, Tag 09ZW]

We deduce that finite Altale coverings do not depend on nilpotent elements, so X, extends
uniquely to a finite Altale covering X}, — X for all k > 0. In particular we have a finite
Altale covering AL’ — & over the formal completion of X along Xj.

We have Grothendieck’s Algebrizarion:

Theorem. Let A be a Noetherian ring complete with respect to an ideal I. Write
S = Spec(A) and S, = Spec(A/I"). Let X — S be a separated morphism of finite type.
For n > 1 we set X, = X xsSy,. Suppose given a commutative diagram

Xi X5 X3

Lo

Xi —— Xp — X3

of schemes with cartesian squares. Assume that
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(1) X;, — Xn is a finite morphism, and

(2) Xi — Sy is proper.

Then there exists a finite morphism of schemes X' — X such that X;, = X' xg Sp.
Moreover, X’ is proper over S.

Proof. [Sta] Lemma 29.25.2

So we deduce that I’ is the formal completion of a finite Altale morphism X' — X x 7
Spec(A)

By passage to limit ([Sta], Lemma 31.13.3) we can now restrict to the case when A is the
henselization of a Z-algebra of finite type. We have the functor

{A —alg.} — Set B+ {Finite Altale coverings over X x Spec(B)}

This functor is locally of finite presentation: if B; is a filtered inductive system of A-
algebras and B = lim B;, then

{FAI't(X x5 Spec(lim B;))} = {FAI't(lim X x5 Spec(B;))} = im{FAI't(X x , Spec(B;))}

We can apply Artin’s Approximation theorem:

Theorem. Let R be a field or an excellent DVR and let A be the henselization of an
R-algebra of finite type at a prime ideal, let m be a proper ideal of A and A the m-
adic completion of A. Let F be a functor locally of finite presentation, then given any
&€ ¢ F(A) and any integer c, there is a £ € F(A) such that

£ = £ (modm°)
i.e. they have the same image via the induced maps over F(A/m€)

Proof. | ], Theorem 1.12

So in our case, considering X’ € FAI't(X x 5 Spec(A)) as before, there exists X' ¢ FAIt(X)
such that they coincide over X.
[

2.2 Reduction to simpler cases

2.2.1 Constructible Sheaves

Definition 2.2.1. An abelian sheaf F on Xj,, is locally constant constructible (l.c.c) if
it is representable represented by a finite Altale covering of X. Equivalently (see [ ,
Proposition 5.8.1]), if F is locally constant with finite stalks, and so there exits a finite Altale
morphism s : X’ — X such that r*F is constant.
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Definition 2.2.2. An abelian sheaf F on Xjy, is constructible if it verifies one of the following
equivalent conditions:

(i) There exists a finite surjective family of subschemes X; such that Fy, is l.c.c.

(if) There exists a finite family of finite morphisms X; Pi, X and constant sheaves defined
by finite groups C; over X; and a monomorphism

Fr— l—lpi*Ci
i

It is easy to see that constructible sheaves are an abelian category, and moreover if F is
constructible and F % G is a morphism of sheave, then Im(u) is constructible.

Lemma 2.2.3. Every torsion sheaf F is a filtered colimit of constructible sheaves.

Proof. Let j: U — X an Altale scheme of finite type, & € F(U) such that n& = 0. It defines
a morphism of sheaves

i(Z/nZy)— F

such that if 5 is a geometric point where U is an Altale neighborhood, then (ji (ZInZy)s =
Z/nZ and the morphism

Z/HZ—>F§ m+—>m£’g

ji(Z/nZy;) is constructible: ji(Z/nZ)jy) = Z/nZ; is represented by U] [U...][U n times,
and it is of course a finite Altale covering of U, hence (ZInZy)ju) is le.c.

On the other hand, since X is noetherian, it's quasi-compact, and j(U) is open since j is
Altale. So there is a finte family of open subschemes U; of X such that X\ j(U) = UU;, and
since open immersions are Altale and ji (ZInZy)u, = 0 by definition of ji, ji(Z/nZ)y, are
l.c.c. represented by the empty set.

So we have a finite surjective family of subscheme {j(U), U;} such that ji(Z/nZ;) is locally
l.c.c., hence ji(Z/nZ,;) is constructible, and in particular, the image is constructible. It is
clear that

F =1lim Im(ji(Z/nZ))
U

where n and j depend on U O

Definition 2.2.4. Let G be an abelian category and T : 6 — Ab a functor from G to the
abelian groups. T is AlffaAgable if ¥ A € G, ¥ a € T(A) there is an object M € 6 and a
monomorphism A — M such that Tu(a) = 0

Lemma 2.2.5. The functors
HP(Xet, _) : {Constructible sheaves} — Ab

are AlffaAgable ¥ p > 0
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Proof. It is enough to see that if F is costructible sheaf then it is a sheaf of Z/nZ-modules
for some n by definition, so we can embed F — G into an acyclic sheaf of Z/nZ-modules
(e.g. the GodAlment resolution [], .y ix+Fr, which is flasque). G is a torsion sheaf, so it is a
filtered colimit of G; constructible sheaves, so F — G; and since the cohomology commutes
with colimits, we have

HP (X3, F) — im HP(X3,,, Gi) a0
So V a € HP(Xjy, F) 3 i such that h : F — G; is mono and
HP Xz, F) &5 HP(X,G;) hP(a) =0
O

We need now a technical lemma on AlffaAgable cohomological functors in order to
proceed:

Lemma 2.2.6. Let ¢* : T* — T'* a morphism of cohomological 6-functors 8 — Ab such
that T9 is effaAgable ¥ q. Let & be a subclass of Ob(B) such thatV Ac 63 M € 8 and a
monomorphism A — M. Then TFAE:

(i) ¢9(A) is bijective Vq >0, Ac B

(ii) ¢°(M) is bijective and ¢9(M) is surjective ¥ q >0, M € &
(iii) ¢°(A) is bijective V A € G and T'? is AlffaAgable Yq > 0
Proof. by induction

So we can now prove the key proposition:

Proposition 2.2.7. Let X, be a subscheme of X. Suppose thatV n > 0 and for all X' — X
finite over X the canonical map

HP (X, ZInZ) — HP (X514, 2/1Z)

where X, = X' xx Xp is bijective for q = 0 and surjective for q > 0. Then for all F torsion
over X and VY q > 0 the canonical map

HP(X;, F) — HP(X{zy. F)
is bijective.
Proof. By passage to limit it is enough to show it for F constructible. Consider, with the
notation of Lemma 9:
e (B as the category of constructible sheaves,
o T* = H*(Xzy)
o T = H*(Xozy)

e & as the category of constructible sheaf of the form []p;i«C; where p; : X; — X is
finite and C; is constant and finite.

O]
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2.2.2 DAlvissages and reduction to the case of curves
Definition 2.2.8. An elementary fibration is a morphism of schemes X — S such that it

can be prolonged to form a commutative diagram
X'y X+ vV
f l} !
g
S

Such that:

1. j is an open immersion dense and X = X\ Y

2. f is projective, smooth with irreducible fibers of dimension 1

3. g is finite Altale with nonempty fibers

With this, one can split a proper morphism into elementary fibrations: consider f : X —
Y a proper morphism, using Chow’s Lemma we have

X+——X
N
S

with st birational projective, f projective. Considering now Pg --» ]P% given by the canonical
projection

[xg: ... xn] — [x0: 21]
This is defined outside the closed subset ¥ = Z(xg,x1) = P" 2, so if we consider P the
blow-up of P" on Y, we get a rational map ¢ : P — IP% which extends the projections. The

blow-up morphism P — P" has fibers of dimensions < 1 and is locally isomorphic to P,
In this way one can split a proper morphism into a chain

X=X, X i 5.xNx =5

where all the f; have fibers of dimension < 1. Hence if 5 is a geometric point of X and
assuming that the proper base change theorem holds for relative dimension 1, one has that
at every step

XV Xoy, —— Xist

| y

s —>— Spec(Ox,s) — X;

and since Xg) — Spec(Ox, s) is a proper S-scheme with relative dimension < 1, hence the
theorem holds by assumption and rebuilding we have the theorem for X — S
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2.3 End of the proof

Using the previous reductions, we have reduce ourselves to consider X — S a proper S-
scheme where S = Spec(A) with A a noetherian strictly henselian ring with residue field
k, Xp the closed fiber with dimension < 1 and n > 1, we need to prove that the canonical
morphism

HY(X,Z/nZ) — HY(Xo, Z/nZ)

is bijective for g = 0 and surjective for q > 1.

The case with ¢ = 0 and 1 has already been seen, and one has thet HY(Xy, Z/nZ) = 0 for
q > 3 since Xy = X xs Spec(k) is a proper curve over a separably closed field. So we need
to prove it for g = 2 and WLOG we can suppose n = ¢ for some prime number ¢

2.3.1 Proof for ¢ = chark

We can consider Artin-Schreier exact sequence and we obtain the long exact sequence in
cohomology
1 (F-id)' g 2 9
HZar(XO' (9)(0) _— HZar(XO' (9)(0) — HAI’t(XO’ Z/pZ) — HZar(XO' (9)(0)
We have that:

Theorem. Let ;t: X — Y be a proper morphism of schemes, Y locally Noetherian, y € Y
and dim(Xy) = d. Then for any coherent Ox-modules F

(RimF)y =0 q>d
Proof. [Sta, Tag 02V7]

We have that if 7 : Xo — Spec(k) is the canonical map, then HZ (X0, Ox,) = R?>m.(Ox,)y =
0, hence
1 (F-id)' g 2
HZar(XO' OXO) — HZar(XO' OXO) - H/’Sd't(XO' Z/pZ) — 0
is exact. B
Recall that if k is the algebraic closure of the separably closed field k, then

k =1limk;

where k;/k are finite purely inseparable extensions. So X xj Spec(k;) — X is a finite
surjective radiciel morphism, so

Hl(X,F) = Hl(x X Spec(k) Spec(ki)'F)

So we can suppose k algebraically closed.
We need now a technical lemma:

Theorem. Let k be an algebraically closed field of characteristic p and V a finite-
dimensional k-vector space, F : V — V a Frobenius map, i.e. F(Av) = APF(v) V A €
k, ve V. Then F —id : V — V is surjective
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Proof. [Sta, Tag 0DV6]

Then using Grothendieck’s Coherency Theorem

Theorem. Let f : X — VY proper, Y noetherian, F a coherent Ox-module. Then Rf.F is a
coherent Oy-module.

In particular if Y = Spec(A), then since RIf,F = H(X,F)~, so HI(X,F) is a finite A-
module.

Proof. | , 1.1.2]

Combining this two results again on 5t : Xo — Spec(k), one has that (F —id)! is surjective,
so H*(Xo, Z/pZ) = 0

2.3.2 Proof for ¢ + char(k)

Using Kummer exact sequence one has the following commuative diagram

Pic(X) —%— H?*(X,Z/¢"7)

| |

Pic(Xo) —— H2(Xo, Z/0°7)

It can be shown that for all proper curves over a separably closed field the map S is surjective
(I , IX.4.7])
So it is enough to show that

Proposition 2.3.1. Let S be the spectrum of an henselian ring, X and S-scheme and X
the closed fiber. Then the canonical map Pic(X) — Pic(Xy) is surjective

Proof. Since X is a curve, it is enough to prove that the canonical map Div(X) — Div(Xo)
is surjective.

Every divisor on Xy is a linear combination of divisor with support in closed points. So
consider x a closed point of Xy, fo € Ox, a regular non invertible element and Dy the
divisor of local equation ty. Consider an open neighborhood U C X of x and let t € Oy(U)
a lifting of fy. Then consider Y the close subset of U defined by t = 0. Taking U small
enough, one can suppose that ¥ N Xy = {x}. Then Y is quasi-fintie in x over S.

Then by the characterizations of henselian local rings ([Sta, Tag 04GG]) V = Y3 || Vo with
Yy finite and Y5 N Xo = #. And since X is separated over S, ¥; is closed in X since finite =
proper.

So by choosing U small enough, one can suppose Y = ¥4, hence Y is closed in X. So one
can define a divisor D on X corresponding to ¥ and one have Dix\y = 0 and Dyy = div(f).
Then D]Xo = Do. ]
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2.4 Proper support

2.4.1 Extension by zero

Definition 2.4.1. Let A 5 & be a LEX additive functor between abelian categories. We
can define the mapping cylinder of f as the following category G:

e Ob(B) are triplets (A, B, ¢) such that A € A, B € B and ¢ € Homg(B, fA)

e £:(A,B,¢) — (A',B,¢) is given by €1 € Hom 4(A,A’), &g € Homg(B, B) such that
the following diagram commutes:

It is immediate to see that 3 is abelian and
(A, B, ¢)~ (A,B,¢) - (A", B",¢)

is exact if and only if
A")A*)A” B,HBHB"

are exact.

Definition 2.4.2. We can define functors:

*:86—> A (A B¢)— A i*:6—-%B (A,B¢)—B
je: A— 6 A (A fA,id) ir:83—6 B~ (0,B,0)
ji: A—-6 A (A,0,0) i':6—- B (A B,¢)— ker(o)

(i) It is trivial that ji 4 j* 4 j, and i* - i, it just check on the Hom. In particular j, and it
are left exact.

(ii) By definition, j*, ji, i* and i, are exact.
(iii) By definition, j, and i, are fully faithful.
(iv) By definition, i*j, = f and i*jy = i'j; = i'j, = j*is = 0
We need now a technical lemma:
Theorem. Consider abelian categories A, G’ and 9B and functors

J i*
A== @ %

J

i

such that:
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a) j* 4 j. and i* 4 i,

b) j* and i* are exact

c) j. and i, are fully faithful

d) For C € G’ we have j*C = 0 if and only if C = i,B for some B € &3

Then the functor f = i*j, is left exact and additive, and the functor

e

C s (*C,i*C,1*C =5 i*,j*C = fj*C)
is an equivalence between G’ and the mapping cylinder G of f
Proof. see | , 8.1.6]

Consider now the following situation: let X be a scheme and Y a closed subscheme,
U = X\ Y with the natural structure of open subscheme, leti: Y — X and j: U — X the
canonical immersions. We have

i *

i
e - U
UAl't <T XAl't % YAl’t

a) and b) are verified.

It can be easily shown (| , 81.1]) that if f : Y — X is an immersion (i.e. a closed
immersion followed by an open immersion), then € : f*f, — Id is a natural isomorphism,
hence f, is fully faithful. So c) is verified.

It can also be easily shown (| , 8.1.2]) that i, induces an equivalence between Y;;, and
the sheaf of Xj,, vanishing outside Y, so since by definition j*F = 0 if and only if F' vanishes
outside Y, d) is verified. So we have proved that

Theorem 2.4.3. In the situation above, we have an equivalence of categories between
Xzp¢ and the mapping cylinder of i*j, given by

el
F s (j*F,i*F,i*F ~%5 i*j,j*F)
So by the previous construction we have an exact functor ji : Ug;, — Xjz and a left

exact exact functor i' : Xzr¢ — Yipe In particular, since j*ji = id and i*j, = 0, we have that
if x is a geometric point on X and F € Uy,

Fi ifxeU
P =
GiF)x {0 otherwise

ji is called extension by zero
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2.4.2 Cohomology with proper support

Considering X a k-scheme of finite type with k algebraically closed, then one has a (not

unique) Nagata compactifiation
X %

where X is a proper k-scheme of finite type and j is an open immersion. Then one can
define for any torsion sheaf F

U — e

H.(X,F):= H(X,jiF)

This is independent from the choice of the compactifiation: if X1 and Xy are two compact-
ifiations, then Xy x x X» is again a compactifiation and X; xx Xo — Xy is proper for t = 0,1,
so we have to check only the situation where we have a commutative diagram

XLXQ
Xz lp
Xy

with p proper.
Lemma 2.4.4. p.joF = juF and Rip.joF =0 for g > 0

Proof. Equality holds if and only if it holds for every geometric point 5, so one uses the
proper base change for p

Fs ifS€X1

JnF)s = HY(Xy)s, jor F) =
(P+jorF)s ((Xo)s, jor F) {o otherwise

and H((X»)s, juF) = 0 for i > 0 since j, is an open immersion and the fibers are of dimension
<1 O

This lemma says that in the derived categories we have Rp,jor = ji1 and RpyjoiF = pyjaiF,
so we conclude. In particular one can define for any separated morphism of finite type

between Noetherian schemes X %> V a higher direct image with proper support considering

X L, v proper and j : X — X open, hence for any torsion sheaf F
RPHiF := RPf,jiF
This follows directly from the proper base change:

Theorem 2.4.5. Let X ER Y be a separated morphism of finite type of Noetherian schemes.
Let VV' L V be a morphism of schemes. Set X' = X xy Y’ and consider the cartesian
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diagram

x 2. x

[

;g

vV — Y

Then for any F torsion sheaf on X¢¢ one has an isomorphism of Y’'-sheaves
g*RPfiF = RPf{g™F

Proof. Just apply the proper base change on X and jiF

Remark 2.4.6. One can define the direct image with compact support even for non torsion
sheaves, but in this case we will need to fix a compactifiation. In the next chapter, this will
be done considering a totally imaginary number field K, then Spec(Og) — Spec(Z) is finite,
hence proper. So consider f : U — Spec(Ok) an open, for every sheaf F on U we define

H(U, F) = H"(X, jiF)

This will allow us to generalize results given on torsion sheaves.

2.4.3 Applications

Theorem 2.4.7. Let f : X — S be a separated morphism of finite type of relative dimen-
sion < n! and F a torsion sheaf on X. Then RIfiF =0 for all ¢ > 2n

Proof. Take y a geometric point of Y. Then for the previous theorem we have:
(RPfiF)y = HI(Xy, Fx,)

Hence it is enough to prove that for X — Spec(k) separated of finite type of dimension n
with k separably closed, HZ(X, F) = 0 for q > 2n. Use induction on n: if dim(n) = 0, it's
true since I'(X,_) is exact. So suppose dim(X) > 1. We have that dim(X \ Xreq) = 0, so it
is enough to prove it for X reduced. If an irrdeducible component D has dimension < n,
then for the exact sequence

O—-Fp—>F—>Fnp—0

we can suppose X of pure dimension n. Take m ---n, be the generic points and take
t; € k(n;) transcendent over k. Take U; an disjoint open affine irreducible neighborhood of
n; such that t; € Ox(U;), hence we have a morphism T — t; which gives a morphism

Ui — AL

Since the set {x € X : Ox is flat over k[T]} is open ([ , 1.5.8]), we can consider U; flat
over Al. Hence we have for all closed points y € Al and x € U; who lies above y

dimg,(Oy, « ®(9A}?’y k(y)) = dimkr(Oy, x) — dimKr(@Alg,y) <n-1

li.e. for all geometric points s of S dim(X;) < n



42 CHAPTER 2. PROPER BASE CHANGE

so the fibers above closed points have dimension < n — 1. So if U = NUj; ER Al we have by
induction hypothesis
Rpng[U =0ifq>2(n-1)

We have by | , IX,5] that for all torsion sheaves G over A}Q we have
HP(AL, G) = HP(PL,[1: _)G) =0if p > 2
So by the spectral sequence
HP(A!, Rif,F) = HP*Y(U, F)

we get that HZ (U, F) = 0 for q > 2n.
By construction, dim(X \ U) < n — 1 since U contains all the generic points. So again by
induction hypothesis

Hg(X\ U, F|X\U) =0ifqg> 2(n — 1)

Hence we conclude by the long exact sequence
— HL(U,F) — H.(X,F) — H(X\ U, F) — ...
O

Theorem 2.4.8. Let f : X — S be a separated morphism f finite type and F a constructible
sheaf on X. Then RIf\F = 0 is constructible

Proof. [Del, Arcata IV 6.2] O

Theorem 2.4.9 (Projection formula). Let f : X — Y be a compactifiable morphism, let
A be a torsion ring. Then for any K € D~(X,A) and L € D'V, A) we have a canonical
isomorphism

L &% RAK = RAFL % K)

Proof. Let X 4, X —]—(-> Y the compactification, so Rf; = Rf.ji. Let M‘ a complex of sheaves of
A-modules on X and N°® a complex of sheaves of A-modules on X. Then using the mapping
cylinder we have N = (j*N,i*N, ¢) and

JU*N @x M) = ("N ©a M,0,0) = N ® jiM

So if M* is a complex of flat modules quasi isomorphic to K* and N* is quasi isomorphic
to f*L*, the isomorphism gives a quasi isomorphism

JG* L @% K) = f L@ jiK

Hence, since . . o
RAF'L &% K) = REJGFL @5 K) = REFL @K jK)

it is enough to prove that the canonical morphism induced by the adjunction L — f.f*L

L @% RfjK — Rf(f*L @k jiK)
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is an isomorphism. Let s — VY be a geometric point of ¥ and f; : X; — s be the base change.
For the proper base change we get

(L ®]}“\ %f*]lK)s = Ls ®% gais*(j!K)Xs
(RE(FL ®F jiK))s = Rfse(F*L ®F jiK)x,



Chapter 3

Geometry: PoincarAl duality

3.1 Trace maps

Fix a base scheme S and n invertible on S. Then we define for all d and any sheaf F of
Z/nZ-modules:

p&a ifd >0
7/nZ(d) =  Z/nz ifd =0 F(d) = Z/nZ(d) ® F
Fom( 2-4,7Z/nZ) ifd <0

Let f : X — S be a smooth S-compactifiable morphism of relative dimension d. The aim of
this section is to construct a canonical morphism

Tryyy : RAfif*F(d) — F

If f is Altale, then d = 0 and f; is left adjoint to f*, hence we define Try as the counit
Trs : f*fiF — F. Let X be an integral proper smooth curve over an algebraically closed
field k. By theorem B.9.4 we have

deg
H*(X, p) 2 Pic(X)n = Z/nZ

Hence we get Tryy, : H*(X, Z/nZ(1)) — Z/nZ this morphism.

If X is smooth irreducible over k algebraically closed, then if X is its compactification, X\ X
has dimension 0, hence it is a finite set of points, so HY(X\ X, ,) = H*X\ X, ») =0, so
for the long exact sequence we get

HY(X,Z/nZ(1)) £ HY(X, Z/nZ{1))

and we define Try/, to be the composition of this isomorphism and Try/,.
If X is smooth over k algebraically closed, then the irreducible components Xj...X,are the
connected components, hence

H?(X,Z/nZ(1)) = @H?(X;, Z/nZ(1))

44
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and we define Try, := ®Try, k.
Consider now, f : X — V Altale and V/k a smooth curve over k alg closed. Since f* , v =
n,X, the counit gives a morphism ,v— fi nx

Sxv t HAX, nx) S HAY, fi nx) — HZ(Y, wy)

Lemma 3.1.1. In the situation above, we have Try;, = Try;rSx/v

Sketch of proof. (see [ , 8.2.1]) Consider the morphism on the compactification f definde
by
X 1,7
A
x Loy

It is finite and flat, so f*(9y is locally free of finite type over Oy. Consider V such that (fs Gy)]v

is free, then for all s € f,Ox(V) we have an endomorphism induced by the multiplication by
s, hence we have a morphism

s+ det(s) : f.0x(V) — Og(V)
Hence we have a morphism of sheaves
det: f*(9§ — Og
which induces a morphism of Altale sheaves
det : f,Gmyx — Gmy

And since f, is finite, it is exact, so we have a commutative diagram

0 n,Y f*GmX I f*GmX — 0
l ldet ldet

We define Tryy to be the map on the kernel. In fact, we have that if y is a geometric point
of VY, then

(fe nly = € T(Spec(03), n)

xeXy
So for any (Ay) € (f« n)y
Try o) = | [A2

with n, = rankgsn (Osyhi) Then we have a commutative diagram
vy 4

. o 2 u F(Trgy) -
][yf! n—— f*]!y n *XD; f* n

\j!yT‘I'X/yl
%
I n
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Which gives a commutative diagram
HZX, n) —— H*(X, n)
LSX/Y L%(W
HZ(Y, ) —— H*(Y, n)

Hence it is enough to prove that Try,, = Try,, Sy, but by definition and Kummer theory

Pic(X) —— H*X, ) — 0
ldet LSY/V
Pic(V) —— H2*(Y, ,) — 0

So it is enough to prove that the following diagram commutes

Pic(X)

Pic(V)

And this follows form the fact that if £ € Pic(X), then as a Cartier divisor it is £ = (s;, f~1V;)
with {V;} and open cover of Y. Then det(X) = (det(s;), Vi), and the assertion follows by
the fact that for any closed point y and any s € K(X)*, we have

vyldet(s)) = 3 vels)

xeXy
and the theorem comes from the base change Spec(éyly) — Y and for the fact that
vy(det(s)) = vy(Ngsn(x) ksn(v)(s)) = [R(x) : k(y)]ve(s) = vx(s)
and since (9@’75, is strictly henselian [k(x) : k(y)] = 1.

Definition 3.1.2. Let now X be any scheme. For a line bundle £ € Pic(X), denote c1(X)
its image through the map given by Kummer

Pic(X) - H*(X, n)

And for any f : X — VY denote cy,,, (L) the image under the canonical morphism given by
the spectral sequence
H*(X, n)— T(Y,R*f, n)

which induces by adjunction a unique morphism
H*(X, n)y — R*fs n

Where H%(X, ,)y is the constant sheaf associated to the abelian group H%(X, )
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Proposition 3.1.3. Let f : ]P’{, — VY be the projection, Y any scheme, then the morphism
defined by
1 ey, (Ogy (1)) : ZInZ — R*fy

Proof. By proper base change, it is enough to prove it for Y = Spec(k) with k algebraically
closed. Hence here we have the isomorphism

¢y : Pic(PL)/nPic(P}) = H2(PL, ,)
And deg gives the isomorphism
Pic(PL)/nPic(PL) — Z/nZ
So the lemma comes from the fact that deg(OP}e = 1 (it is the hyperplane bundle) O

Define Trpi )y an the inverse of this isomorphism. Consider now f : Al — V the

projection and j : A}, — P} the compactification, then we have Tryi,y : R?fi , — p as the
composition of

o
R f*TrA}e/]P}Z Tryt 1y

R*fi yat = Bfuji put ——— R*fu ot —— ZInZ

Consider now g : X —» Y and h : Y — Z smooth compactifiable morphisms of relative di-
mension d and e respectively. Then f = hg is smooth compactificable of relative dimension
d + e. Suppose that we have defined:

Try : R¥gZ/n7Z(d) — Z/nZ Try : R?°hZ/nZ(e) — Z/nZ

So since for proper base change f;, g1 and h; have finite cohomological dimension over
torsion sheaves, they define in the derived category:

Try : RgiZ/nZ(d)[2d] — Z/nZTry : RhZ/nZ(e)[2e] — Z/nZ

And since Z/nZ(d + e) = Z/nZ(d) ®%/nz g«Z/nZ(e), by the projection formula proposi-
tion C.7.8:

Rgi(Z/nZ(d) ®%,,., 9*ZInZ(e)) = RG.(iZ/nZ(d) ®% ., jij*G*ZInZ(e)) = RgiZ/nZ(d) ® Z/nZ(e))

So we can consider

Trg

Rfi(Z/nZ(d + e)[2(d + e)]) = Rhi{(RgiZ/nZ(d)[2d] ®§/nz 7Z/nZ(e)2e]) —
Rh/(Z/nZ &L, , ZInZ(e)[2e]) 2 Z/nZ
Hence this define a map
Try : R2A+e)f(Z/nZ(d + e)) — Z/nZ
And we denote this way of composing traces as

Try/z = Try,;z o Tryy
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So since AY := A7 xz ¥V = A}&;f“ we can define Tryyy considering the dAlvissage:
gHAg—i...Agﬁ 1%
where the maps are induced by the inclusions
Zlty - ta-1] = Z[ty - - - tq]
and since Tr ALIY has already been constructed, by composition

TT'A’X}/Y = TrAiAn—i/AVi RRERS TPA{,/Y

So if f factorizes as

N

with f Altale, we have defined Try, and it can be shown (] , Lemma 8.2.3]) that it is
independent from the factorization.

Finall, if f : X — Y is smooth of relative dimension d, then there is an open cover U, of X
such that

U, d 1%
Al

and there is the exact sequence of sheaves

0 — Hom(R*!(f)\F, Z/nZ) —— ]’[ Hom(R*!(fy, )iF, Z/nZ) — ]_[ Hom(R*(fy, nu, | F, Z/nZ)

So Try is well defined for all smooth f using the glueing property for sheaves.

3.2 PoincarAl duality of curves

3.2.1 Algebraically closed fields

Definition 3.2.1. Let A be a ring, X a compactifiable S-scheme of Krull dimension N, X is
its compactification and j: X — X is the open immersion. Then we have the exact functor
ji : Sh(X, A) — Sh(X, A), since for all F we have by definition H.(X, F) = EX’[%(AX, jiF). So
for all F, G € Sh(X, A), we can define as in definition C.5.8 a cup product pairing

HL(X,F) x Exty""{(F,G) —» HN(X, G)

Lemma 3.2.2. If X is a Noetherian scheme, A a ring such that A is injective as a \-
module, F a locally constant sheaf, then 8xti(F,\) =0 forq >0
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Proof. Since being zero is a local property, we may assume F constant associated to a
A-module M. Consider a free resolution L, — M and denote also L' the constant sheaf
associated. Then for all N and all geometric points x

(¥Com(Li, N))x = lim Homgpy ) (Li, Ny) = lim Homy)(Li, N(U)) = Homa(Li, N)
xeU xeU

Hence since if N — I° is an injective resolution of sheaves, Ny — I is an injective resolution
of A-modules, so

(RFCom(L;, N))x = Flom(L;, I*)x = Homp(L;, I3) = RHomj (L;, N)

But L; is free, so RHompa(L;, Ny) = Homp(L;, Ny), hence 8xt4(L;, N) = 0, so Rflom(F,N) =
$Com(L,, N).

Hence, in our case R¥Com(F, A) = $lom(L®, A\), and since they are both constant R¥Com(L®, \) =
RHomj (L*, A) = Homp(L®, A) since A is A-injective by hypothesis, so 8xt4(F, ) = 0 for
q>0 O

Remark 3.2.3. Let X be a smooth curve over an algebraically closed field k, if F is locally
constant then _ ®" F 4 R¥Com(F,_), so we have that if F is lcc and G is injective:

Ext4(A, ¥eom(F, G)) < Extd(F, G)

hence if A is injective as A-module (e.g. A = Z/nZ) and G = 5, composing with the trace
we have
HL(X, F) x H2N-{(X, Flom(F, ,)) — HN(X,G) 15 Z/nZ

So the aim of the section is to prove that if N = 1 the pairing:
H.(X,F) x Ext¥ " {(F, n)— H2X, n) (Pairing 3.1)
is perfect. We need some dAlvissage lemmas:

Lemma 3.2.4. Let X be a smooth curve on an algebraically closed field K, let 7t : X' — X
be an Altale map, let F’ be a sheaf of Z/nZ-modules on X'. Then Pairing 3.1 relative to
F’ is perfect on X' if and only if it is perfect on X relative to mF’

Proof. Since 7 is Altale, 71 is exact. Let X and X’ be compactifiation of X and X’ respectively,
such that jor = 7r'j’ and 7’ is proper, so

HE (X, mF') = Exte(Z, (ja)iF') = Extel(Z, njiF') = HY (X, F)

and
Exty(mF’, n)=Ext% (F', ,)

O]

Lemma 3.2.5. Pairing 3.1 is perfect if F is skyscraper, i.e. has support in a finite closed
subset
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Proof. If F is skyscraper, then it is the direct sum of sheaves with support in one closed
point, hence it is enough to consider the case when F = i,M where i : Spec(k) — X and M
is a finite Z/mZ-module.

Since X is integral and smooth, consider the Nagata closure X — X, then X is proper. So
consider X — X its normalization, and since X is proper, X is an integral proper smooth
curve, hence smooth and projective ([Sta, 0A27]). So we have an open immersion

X X

with X projective, so by lemma 3.2.4 we can suppose X an integral projective smooth curve,
hence Try, : H*(X, n) — Z/nZ is an isomorphism.
So since i, is exact:

M ifr=0

H"(X,i,M) = H"(Spec(k), M) =
0 otherwise
and one can see ([ , 8.3.6]) that Ri'F = F(—1)[—2] for any constant sheaf F, so:

Ext*"(i,M, n) Z Hompx,z/nz)(isM, n[2 — r]) = Hompznz) (M, Ri'Z/nZ(1)[2 - r])

Hom(M,Z/nZ) ifr =0

Z Hom M,Z/nZ1)[-r])) =
p(z/nz)( (D[-r])) {0 P

Recall that the pairing
M x Hom(M, Z/nZ) — Z/nZ

is perfect for Pontryagin duality since M is finite. So the pairing
H%x, M) x Ext?(M,Ri' ) — H?(x,Ri' ,) = H*(X,i,Ri' ) = H2(X, n)
is perfect. Then since X \ {x} is affine, H>(X \ {x}, ») = 0, so the canonical morphism
HY(X, n) = H*(X, n)

is epi, and since they are both free of rank 1, it is an isomorphism, so the pairing is
perfect. O

Lemma 3.2.6. Pairing 3.1 is perfect if F = Z/nZ.

Proof. Itis again possible to suppose X irreducible with a smooth projective closure j : X — X
and a closed immersion i : X \ X — X with X\ X finite. Then it is enough to show that

H"(X,jiZInZ) x Ext*?(iZ/nZ, »)— Z/nZ
is perfect. Since j*Z/nZ = Z/nZx and i*Z/nZ = Z/nZx, x, we have an exact sequence
0 — jiZ/nZ — ZInZ — i,Z/nZ — 0
So for any Z/nZ-module consider the dual

MP := Hom(M, Z/nZ)
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Since Z/nZ is injective, (_)P

_)" is exact. So the pairing induces a morphism of long exact
sequences

. —— H"(X,jZ/nZ) —— H'(X,Z/nZ) —— H"(X,i,Z/nZ) —— ---

l(i) l@) l(S)

. —— Ext®*TGiZ/nZ, n)P —— Ext®*"(Z/nZ, ,)° —— Ext®*T(i,Z/nZ, p)°P — --.

So by the previous lemma (3) is an isomorphism since i,Z/nZ has finite support, so it is
enough to show that (2) is an isomorphism, hence we are reduced to the case where X is

projective.
Since Ext*"(Z/nZ, ») = H%7"(X, ,), we have that [Del, Arcata 3.5]
ZInZ ifr=0
Pic%(X)n £ (Z/nZ)?»9 ifr =1
Ext>"(Z/nZ, p)= lCN( In = (ZInZ) nr
n = Z/nZ ifr=2
0 otherwise

So they have the same number of elements, hence it is enough to show that 2 is injective
The pairing for r = 0 is given by (¢, ¥) — ¢ in

HomD(X,Z/nZ)(Z/nZ, Z/HZ) X HomD(X,Z/nZ) (Z/HZ, H[Q]) — HomD(X,Z/nZ) (Z/HZ, H[Q])

So if ¥ € Ker(2), then, for any ¢, ¥¢ = 0, hence ¥ = 0, so for r = 0 (2) is an iso, and the
same argument works for r = 2 on ¢ choosing an isomorphism , = Z/nZ.

So it remains r = 1. For any a € H'(X,Z/nZ) consider the associated torsor s : X' — X,
with st Galois and finite Altale. Then the image of « into H'(X’, Z/nZ) is zero, hence

a € Ker(HY(X,Z/nZ) — H(X, m.Z/nZ))

and since st is surjective, Z/nZ — m,Z/nZ is injective, hence if F is the cokernel we have
an exact sequence
0— Z/nZ — mZ/nZ — F — 0

which induces a morphism of long exact sequences

H'(X,Z/nZ) —Y— H"(X, mZ/nZ) — 5 H'(X,F) — 2 ...

! ! Eo

Ext*"(Z/nZ, n)* — Ex®*"(mZ/nZ, n)* —— Ext?7"(F, o)f —%— ...

We have already shown that a' is an iso, hence for lemma 3.2.4 b? is also an iso.

Notice that a € Ker(v!) = Im(d"), so if a'(a) = 0, there is a lift 8 such that 8°c%(B) = 0, so
there is y € H°(X, ,Z/nZ) such that c®v%(y) = c%(B). So to conclude we need to show that
Y is mono, since if B = v°(y), then a = 0.

Since o is finite Altale, 1,Z/nZ is lcc, so F is lcc. It can be shown | , 5.8.1] that there is



52 CHAPTER 3. GEOMETRY: POINCARAT, DUALITY

a surjective finite Altale morphism 7’ : X” — X such that 77*F is constant, and since every
Z/nZ-module of finite type admits an injection into a free Z/nZ-module, consider a mono
7*F — L. Hence since 7t is surjective F — st F is mono, hence for some G there is an
exact sequence

0— F—mL

which induces a commutative diagram

0 — HYX,F) — H(X,n.L)

Jev IS

Ext’(F, .)* —— Ext?(n’L, o)*
So by lemma 3.2.4, (x) is an isomorphism, hence we conclude. O
Theorem 3.2.7. Pairing 3.1 is perfect for any constructible sheaf F

Proof. It can be shown | , 5.85] that there exists an Altale morphism of finite type
f: U— X suchthat fiZ/nZ — F is surjective, let G be its kernel, which is again constructible.
Then we have a morphism of long exact sequences

- — Ext"(F, ) —— Ext"(fZ/nZ, ,) —— Ext"(G, ) —— ---

|w |@ |e

- —— H?>7"(X,F)* —— HZ?7"(X,AZ/nZ)" —— HZ"(X,G)* — -

For lemma 3.2.4 and 3.2.6 (2) is an iso for any r. So for r = 0 (1) is an mono. This is true
for any constructible sheaf, so for r = 0, (3) is a mono, so (1) is an iso. This is true for any
constructible sheaf, so for r = 0, (3) is an iso. We conclude applying the same argument
for all r O

Corollary 3.2.8 (PoincarAl Duality for curves). With F locally constant constructible, let
FP = $lom(F, ,) we have a perfect pairing

H.(X,F) x H*N-UX, FP) — Z/nZ

Lemma 3.2.9. Let X be a regular scheme of pure dimension 1, j : U — X an open
immersion, A a Noetherian ring with n\ = 0 and such that A is an injective A-module.
Then for every F lcc on U

FCom(j.F, ) = j.FCom(F, A)

and for every q > 0
Exti(j,F,\) =0

Proof. | ]
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Theorem 3.2.10. Let X be a smooth curve over an algebraically closed field, j: U — X a
dominant open immersion, F a locally constant constructible sheaf of Z/nZ-modules on
U, FP = $lom(F, ,). Then we have a perfect pairing

H.(X,j.F) x H*N-UX,j,FP) — Z/nZ
Proof. By the previous lemma the spectral sequence
HP(X, 8xt1(j,F,Z/nZ)) = Ext’*4(j,F,Z/n7Z)

degenerates in degree 2 and
$Coml(j,F,Z/nZ) = j,FP

So Ext’(j,F,Z/nZ) = HP(X,jFP) and the result follows from corollary 3.2.8 applied to
J«F O
3.2.2 Finite fields

Let now k be a finite field of characteristic p, X a smooth curve over k.
Recall that for any Galois covering ¥ = X with Galois group G, the Ext spectral sequence
gives a quasi isomorphism

RT(X,F) = RI'(G, RT(Y, n*F))

In particular, if we consider the separable (hence, algelaraic) closure k of k, the normalization
X — X is a Galois covering with Galois group Gy = Z. Hence we have a spectral sequence

HP(Z,HY(X, F) = HP*9(X, F)

So if F is constructible HI(X, F) is finite and we have that if M is a finite Gp-module, we
have that if p = Fr — id, where Fr is the Frobenius who generates G, then

oM = Ker(p) ifr=0
H"(Gg, M) = 4 M,, = CoKer(p) ifr=1
0 otherwise

So if F is constructible the spectral sequence is a two-columns, hence we have exact se-
quences
0 — HY(Gp, H* (X, n*F)) — H"(X, F) — H°(Gp, H"(X, t*F)) — 0

And by replacing X with its Nagata compactifiation and F by jiF we have the same for
compact supported:

0 — HY(Gg, HY Y(X, n*F)) — H™X, F) — H%(Gy, H}X, 7*F)) — 0

So in particular, since H>(X, ,) = 0 we have an iso (H2(X, n)), = H2(X, n), but since

H2(X, ) Z Pic(X)/nPic(X) 2% 7/nZ
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And the Frobenius does not change the degree of a divisor, in this case Fr = Id and
(H2(X, n))p = H2(X, n) = Z/nZ, hence

H3(X, n) = Z/nZ

So by dualizing and taking FP = $lom(F, ,) we have a morphism of short exact sequence

0 —— H (X, n*F), — HYX,F) —— HMX,m'F), ——— 0

|w l@) |@

0 (pH?’—F(X(JT*FD)* HS—r(X, FD)* H2—r(X, N*FD)p)* 0

So to prove that it is an isomorphism, we need to rove that (2) and (3) are.
Considering Tate duality for finite fields (theorem 1.1.9): for any finite Gip-module M, if
M* = Hom(M, Q/Z) we have an isomorphism of finite abelian groups:

(pHS—r(X, H*FD))* = (HS—r(X, JT*FD)*)p
and since FP is finite annihilated by n, this gives an isomorphism
(pHS—r (X’ JT*FD))* ~ (HS—r(X, JT*FD)*)p

Hence (1) is an isomorphism since it is the kernel of the isomorphism of PoincarAl duality.
With the same idea, (3) is an isomorphism, hence we have

Theorem 3.2.11. If k is a finite field, X/k is a smooth curve, n is invertible on X, then for
any constructible sheaf F we have a perfect pairing

H!(X,F) x Exty "(F, n)— H3(X, »)Z Z/nZ
Corollary 3.2.12. If F is locally constant constructible, FP := $om(F, n) then we have
Exty(F, n) Z H"(X,FP)
So PoincarAl duality gives a perfect pairing
HY(X,F) x H*"(X,FP) » H}(X, ») = Z/nZ
Proof. Same as for algebraically closed field using lemma 3.2.2

Remark 3.2.13. If F is killed by n and F’ is n-divisible, then if we take F’ — I*® an injective
resolution of abelian groups, then ,, F' — I* is an injective resolution Z/mZ-modules of ,, F’,
since F'/nF’ = F" and I" is divisible by all n prime to n, hence

Extsy iy znz)(F-mE') = H' (Homsp(y z/nz)(F, I°)) = H" (Homspy)(F, I°)) = Ext"(F, F)
In particular, if F is killed by m, then
Exty(F, Gm) = Extgyx z/nz)(F, n)

So in the following chapters we will consider G, as a dualizing sheaf for generalize this.



Chapter 4

Arithmetics: Artin-Verdier duality

4.1 Local Artin-Verdier duality

Let's keep the notation from Section B.12 From now on, O would be an henselian DVR with
finite residue field
Recall that if X = Spec(0), then for all Altale sheaves F

HP(X, F) = Ext? (Z,F)

Since I'g(F) = Homap(Z, U'o(F)) = Homgp,, (x.,)(Zx, F) = Homs,(Z, F).
We can define by the same idea the cohomology with support in the closed point:

HP(X, F) = Ext? (i,Z, F)

Proposition 4.1.1. The cohomology of j.Gnk on X is computed as follows

K* ifp=0
HP(X,jGmk) = HP(GK, K') = {Q/Z ifp =2
0 otherwise

Proof. Since I's, = I's,j., we have a spectral sequence
HP(X, R%j,F) = HP*(Spec(K), F)

And since if F = G,k we have for remark B.12.1 R9(j,G,k) = 0 for q > 0, it degenerates
in degree 2, hence

HP (X, juGmk) = HP(Spec(K), Gmk) = H(Gk, K')
Proposition 4.1.2. For any N € S we have
HP(X,i,N) = HP(X,i.N)

And the cohomology of i,Z on X is computed as follows

Z ifp=0
HP(X,i.Z) = HR(X,i,Z) = 4 Q/Z ifp =2
0 otherwise

55
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Proof. Consider the short exact sequence:
0= jZ—>7Z—isZ— 0

We have that i, and ji; are exact and preserve injectives, so RHomg, (jiZ, i.N) = RHoms, (Z, j*i.N) =
0. From the long exact sequence of RHom(_,i,N) we get the first equality.
Since i, is fully faithful, exact and preserves injectives, we have

RT'(X,i4Z) = RHoms, (i+Z, i.Z) = RHoms, (Z,Z) = RI'(x,Z)
In particular HY(X,i,Z) = H(Gy, Z), which gives the result.

Proposition 4.1.3. Combining the previous results, we get

a)
O ifp=0
HP(X,G =
( mo) {O otherwise
b)
Z ifp=1
HP(X,Gmo) = 1 Q/Z ifp =3
0 otherwise

Proof. a) Apply proposition 4.1.1 and proposition 4.1.2 to
0— Gno — jsGmg = i.Z— 0
in degree 0 we have Kij — Z, in degree 2 id : Q/Z — Q/Z

b) Since by remark B.12.1 we have Rj,Gn = jiGm, we have that Homps,)(i+Z, jxGm) =
Homps,) (j*i+Z, Gim) = 0, so by applying Homps,)(i+Z, _) to the previous exact sequence,
since i, is fully faithful, exact and preserves injectives we have an isomorphism

Ext? (Z,Z) 2 Ext? (i,Z, Gmo) = HP*H(X, Gmo)
And we already computed ExtP(Z, Z) = HP(Gy, 7Z)

So we can now consider the pairing
Ext’(F,Gmo) x H>"(X, F) — H(X,Gmo) = Q/Z (%)
given by the cup-product on the derived category
Homps,)(F, Gmolr]) x Homps,)(ixZ, F[3 — r]) — Homps,) (i+Z, Gm[3])
fug fogl3—r]

and the maps '
ai(X,F) : Ext'(F,Gp) — HY (X, F)*

where M* is the Pontryagin dual Hom(M, Q/Z).
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Definition 4.1.4. If X is a scheme of dimension 1, A a ring, then a sheaf F is constructible
(resp. A-constructible) if there exists a dense open U such that:

(a) F islocally constant defined by a finite abelian group (resp. finitely generated A-module)
(b) for all x ¢ U, Fx is a finite abelian group (resp. finitely generated A-module)
To see the equivalence with the definition given in Section 2.2.1, we have the following:

Proposition 4.1.5. If X is a Noetherian scheme, A a Noetherian ring F a sheaf, then F is
constructible (resp. A-constructible) if and only if for any irreducible closed subset Y of
X there is a nonempty open subset V of Y such that Fy is locally constant constructible
(resp. locally constant A-constructible).

Proof. see | , Proposition 5.8.3]

Remark 4.1.6. By definition, if X is a trait, then F is constructible (resp. Z-constructible) if
and only if 7*F and i*F are finite Galois modules (resp. of finite type).

Let now p = char(K) (could be 0!)

Theorem 4.1.7 (Local Artin-Verdier Duality). If F is a Z-constructible sheaf without p-
forsion, then

(a) (i) a(X,F) defines an isomorphism
Homs, (F,Gpm)" — H2(X, F)*
(ii) Exfgo(l-“ ,Gm) is finitely generated and o'(X, F) defines an isomorphism
Exts, (F,Gp)" — HZ(X, F)*

(iii) For r > 2 Extg (F,Gp) are torsion of cofinite type (i.e. duals of groups of finite
type), and o’ (X, F) is an isomorphism

(b) If F is constructible such that pF = F, then (%) is a perfect pairing and and all the
groups involved are finite.

Proof. Consider the map
o : HY (X, F) — Ext®"(F,Gpmo)*
In particular, " is defined by a morphism of S-functors D?(X,Z) — D(Ab)!
Hompx 7 (i+Z[-r],_) — Hompx 7)(_, Gmol[3 — r])*

So if
O0—-F—-F,—F—0

!The dual passes to the derived category of abelian groups since Q/Z is divisible
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is an exact sequence and af. is an isomorphism for two of the elements of the exact
sequence, then it is an isomorphism also on the third one by TR3 (see Chapter C). So since
for all Altale sheaves we have the exact sequence

0— jijF - F — i,i*F — 0

it is enough to prove the theorem for j;M and i.N, with M € Sk and N € S;. We want to
reduce to the case of Tate local duality:

i«N

M

Consider again the exact sequence
0— Gmo — jsGmg — i+Z— 0

so by the same idea as before, applying Homps,)(i«N,_) we have
~ 1p.x
Extgk(N,Z) = Extg; (i*N, Gmo)

And again HZ(X, Gye) = H" "' (Gg, Z), so the duality translates in Tate duality for
the finite field k:

H"(Gk, N) x Extg,"(N,Z) — H*(G, Z) = Q/Z

So Extgo(i*N, Gpm) is finitely generated and a! : Extgo(i*N, Gm)" — H2(X,i,N)* is
an isomorphism, a? is an isomorphism of finite groups and a° is an isomorphism
of groups of cofinite type. For r > 3 the groups involved are all zero.

Consider the exact sequence for the cohomology with support
HI(X, F) — H'(X, F) - H"(G, j*F) —

Then if F = j;M, we have that I'(X, ji(_)) is the zero functor since again we have
the exact sequence

0— jM — Rj,M — i,i*Rj,M — 0

which induces in degree 0

0—-I'(X,jiM) — MCx =, (MGin)Gk

and ji is exact. If ji sends injectives to acyclics, we can derive and get RI'(X, ji(_)))
0.
To prove this, take I injective and consider the exact sequence

0— jil = (1,0,0) — jiI = (I, I, id) — ixi*jsl = (0, 7I,0) — 0

It is an injective resolution of jiI since i* i, and j, preserves injectives, so
ExtY(Z, jiI) = 0 for q > 1 and applying Hom(Z, _) we get

0 — Homs, (Z, jil) — Homs, (Z, jiI) = I°¢ — Homys, (Z, i,i*j,I) = (161)C*
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And since (I9)G = J6x we have also Ext!(Z, jiI) = 0, hence jI is acyclic.
So we have that H2(X, jiM) = HP~'(Gk, M) Moreover, we have that ji 4 j* are
exact, hence

Hompys,)(iM, Gmo) = Homps, (M, K')
So we reduce to Tate duality for the henselian field K:
H"(Gk, M) x Ext57(M,K") — HX(Gk,K') = Q/Z
So now Homys, (iM, G,) is finitely generated and a° : Homs, (, iM)" — H3(X, jiM)*

is an isomorphism, a! is an isomorphism of finite groups and o is an isomor-
phism of groups of cofinite type. For r > 2 the groups involved are all zero.

Hence, by using the exact sequence, we have for r > 2

Exts, (ij*F, Gm) —— Ext} (F,Gp) —— Ext§ (i,i*F, Gum)

[ | [

H3 (X, jijf* F)* ——— HY (X, F)* ——— HYP(X, i, i*F)*
So we deduce the result for r > 2. For r = 1, since Extgo(i*i*F , Gpy) is finite we have

ExtS, (jij*F, Gm)" —— Ext§, (F,Gm)" —— Ext§, (ixi*F, Gp)

| | I

H2(X,jij*F)* ————— H2(X,F)* ——— H2(X,i,i*F)*
And finally for r = 0 we have

0 —— Homg,(F,Gy,)" —— Homg, (ii*F, Gpy)"

I [

0 — > HYX,F)* —— H3(X,i,i*F)*

And since for F constructible without p torsion all the groups involved in Tate duality are
finite, we are done. O

Corollary 4.1.8. If F is lcc such that pF = F, then consider FP = $om(F, G,) the Cartier
dual, then we have a pairing

HY(X, FP) x HY™"(X, F) = HY(X, Gm) = Q/Z
Proof. Since we have

Hompy)(Z, RFlom(F, Gy,)) = Hompx)(Z QY F,Gp) = Hompx)(F, Gm)
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We just need to show that R¥Com(F, G,,) = Flom(F,Gn)?.
We have that, since the stalk is an exact functor,

R¥Com(F, Gp)z = RHomy(Fz, (Gn)z) = RHomy(Fg, O")

and since O"* is divisible by all the primes that divide Fz, we have RHomy(Fz, O""*) =
Homy (Fg, O").
On the other hand,

R¥Com(F,Gp), = RHomy(Fy, (Gp)y) = RHomy(Fp, K )

and we conclude for the same reason as before. O

4.2 Global Artin-Verdier duality: preliminaries

Notations:

e K will be a global field, K a fixed separable closure, G its absolute Galois group,

Sk = 5¢ U S, the set of places.

When K is a number field, X = Spec(Ok), when K is a function field, k will be the
field of constants and X will be the unique connected integral proper smooth curve
over k such that k(X) = K. The residue field at a nonarchimedean prime v will be
denoted as k(v).

The generic point of X will be n = Spec(K) and the canonical inclusion will be g : n —
X

U C X is an open subset and U" C S; is the set of places of K corresponding to the
closed points of U

If v is an archimedean place, K, will denote the completion of K at v, and if v is
archimedean, then K, will be the fraction field of the Henselization of the local ring
Ox v. Gy will denote the Galois group of K, with a fixed embedding we identify G, as a
subgroup of Gx We have a canonical map Spec(Ky) — 1, and if v is nonarchimedean
we have a base change diagram

Spec(Ky) —— 1

! !

Spec(Oh) —— X

If F is a sheaf on U C X, then F, will denote the sheaf on Spec(K,) obtained by the
pull back on Spec(Ky) — n— X

If v is a place and F is a sheaf on Spec(Ky), with corresponding Galois module M,
then we will denote
H"(Gy, M) if v is archimedean

H"(K,, F) :=
(Ko F) {HP(GV,M) if v is finite

%i.e. that 8xt"(F,G,,) =0 forallr #0
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421 Cohomology of G,

Lemma 4.2.1. If g : n — X is the generic point, then R*°g,G,, = 0 for all s > 0, i.e.
Rg*G’m = Q*Gm

Proof. If x is a geometric point whose image correspond to the nonarchimedean place v,
by using the base change we defined above

(R°GxGm)z = H(n xx Spec(O3"), **Gm) = H*(Spec(K3"), x*Gm) = H*(I,,K, ) =0, s>0
and if x is the geometric generic point,

(R°gGm)x = HS({1},RX) =0, s>0

Proposition 4.2.2. Let U C X, S = Sk \ U°. Then

HO(U,Gm) = T(U, 0p)
HY(U,G,) = Pic(U)

and there is an exact sequence

0— HX(U,Gm) — P Br(Ky) —» Q/Z — H(U,Gp) — 0

ves
And forr > 4 H"(U,Gn) = @y e H (Kv, Gm)
Proof. We have the exact sequence as defined in theorem B.8.6:
0— Gn — 9:Gp — Divy — 0

And by theorem B.8.11 we have H? and H'.
By the previous lemma, HP(U, g,.Gp,) = HP(Spec(K), Gp,) And by definition

"(U, Divy) = EB H"(U,i,Z) = EB H"(Spec(k(v)),Z)

velo velo
Since Gp(v) = Z, we have
Z ifr=0
H"(Spec(k(v)),Z) = 1 Q/Z = Br(K,) ifr =2
0 otherwise

So the long exact sequence in cohomology gives

0 — H*(U,Gm) — Br(K) —» @ Br(K,) —» H*(U,Gm) — H(K,Gm) — 0

velUo
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and for r > 4 we have isomorphisms H"(U,Gn) = H"(Spec(Ok,s), Gm) = H"(Gs, Kg) =
H"(K, Gp,), and we conclude for r > 4 using a generalization of theorem 1.3.4 to tori (see
[ , 1 4.21]

Global class field theory provides an exact sequence

0— Br(K) L @ BriK,) =™ @/z— 0

VESK

So we have a pair of map

Br(K) L P Brk,) % P Br(K,)

veSk veUo

which induces the exact sequence

0— Ker(f) = HU,Gm) — Br(K) — Kerl(g) = P Br(K,) — coker(f) = Q/Z

veS

Hence attaching it to the previous one we have the required exact sequence O

Remark 4.2.3. If U is a proper subset, i.e. if S contains at least one nonarchimedian place,
the map

P BriK,) - Q/z

vesS
is epi, so the result of the proposition can be generalized as

0— H*(U,Gm) — P Br(K,) — Q/Z
veS
H"(U,Gm) = ) H"(Ky,Gm), r>3

VESy

and recall that H" (K, G,,) = 0 if r is odd.

4.2.2 Compact supported

We need to adapt the definition of compact supported Altale cohomology in order to take
in account the real places.

Let F be a sheaf on U. Since U is quasi-projective over an affine scheme, we have for
[ , 111.2.17] that H"(U, F) = H"(U, F), so we can work with the Cech complex.

There is the canonical map defined in proposition B.5.5

C*(F) — (i)« C*(Fy)

So if v is non archimedean, let S*(M,) = C*(Fy) be the standard complex of M,, and if
v is real, S*(M,) will be defined as the standard complete resolution of M, as defined in
Section 1.1.1, and in any case there is a canonical map C*(F,) — S°*(M,)

Then since we have a canonical map

u:CU,F)— @ C*(Ky, Fv) = € S°(M,)
vg Uo v U0
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We define H? (U, F) := Cone(u)[—1] and H} (U, F) its cohomology, we have a triangle

(Ho(U, F), C*(U, F), @) $"(M,)
v¢ U0

and a long exact sequence

H}(U,F) - H"(U,F) - P H"(K,, F,) >
v¢ U0

By definition it is a 0-functor.

Remark 4.2.4. If K is totally imaginary, since we have now the exact sequence
0 — jF — Rj,F — i,i*Rj,F — 0
we have a long exact sequence

H"(X,jiF) — H"(U,F) - H'(X\ U,i*Rj,F) = P H"(x,i}Rj.F)
xeX\U
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And the last by excision is D,y y H" (Kv, i}RjiF), and since i, factorizes through the
generic point and (j.I); = (I); for every injective I since U is a neighbourhood of 7, we
have H"(Ky, i%Rj.F) = H"(Ky, Fy). So if K is totally immaginary this definition of compact

supported cohomology agrees with the usual one®.

Proposition 4.2.5. (a) For any i : Z — U a closed immersion such that i(Z) # U, F a

sheaf on Z, we have H!(U,i,F) = H"(Z,F)

(b) For any j:V — U open immersion, F a sheaf on V, we have HL(U,jiF) = H{(V,F)

Proof. (a) Since (iF); = 0, we have @V¢U0 H"(Ky, Fy) = 0, hence the long exact sequence

gives the isomorphism
(b) Consider the exact sequence for the cohomology with support
Hiy (U, jiF) — H'(U, jiF) — H"(V, F)

Since by the excision

Hin (U jiF) = @ H'(Spec(Of), jiF)
veU\V

and since we have the exact sequence

H; (Spec(Oh), jiF) — H' (Spec(O%), jiF) — H' (Ky, Fy)

5Notice that since here F is not in general torsion, the definition of proper support cohomology depends on

the choice of the compactifiation!
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by the vanishing of H" (Spec(Oh), jiF) (lemma B.12.5) we have H%(Spec(Oh), jiF) = H" (K, F).
Hence if we consider the map

C*(U,jiF) — C*(U, Rjuj*jihF) = C*(V, F)

its mapping cone is quasi isomorphic to @VGU\V C*(Ky, Fy) The cokernel of EBV¢U S*(Ky, Fy) —
@vezv S°*(Ky, Fy), since there are no archimedean places involved, is

P s'K..F)= P CK,. Fy)

velU\V veU\V

So we have a sequence of triangles

C*'(U,jF) —— C*(V,F) @VeU\V C*(Ky, Fy)

! ! !

Byev S* (Ko, Fy) —— Pypy S*(Ke, Fy) —— Depny C* Ky, Fy)

| | |

H.(U,jjF) ——  H.(V,F) ———— Cone(H.(U,iF) — H.(V, F))

And since the vertical map on the right is the identity, Cone(H.(U, jiF) — H.(V,F)) is
quasi-isomorphic to 0, hence for the long exact sequence in cohomology of the last line

we get the result.
O

Corollary 4.2.6. For every j: V — U open immersion, i : U\ V — U closed immersion, F
a sheaf on U we have HX(V, Fy) = HL (U, jij*F) and @Veuo\vo H"(Ky, Fy) = H"(U\ V,i*F) =
HI(U\ V,i*F), hence we have a long exact sequence
H!(V,Fy) — HI(U, F) — @ H'(v,F,) —
veU\V
There are attempts to give a better definition of it using Artin-Verdier topology as in
[ ] and | ], but right now it is known only in the case of proper schemes.

The attempt of Artin-Verdier compactifiation is in fact to express it as RI'(X, ¢1_) for some
exact functor ¢.

Proposition 4.2.7. Let U — X be an open immersion. Then H2(U,Gy,) = 0, H3(U,Gy,) =
Q/Z and H{(U,Gp) =0 forr >3

Proof. We have the exact sequences
0— H2(U,Gm) — H*(U,Gm) — P Br(Ky) — H(U,Gm) — HY(U,Gm) — 0
v¢U
and for 2r > 4
0— HX(U,Gm) = H*(U,Gm) » D H* (K, Gm) = HZ MU, Gm) — H" U, Gm) — 0

v real

By remark 4.2.3 we have the result. O
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Lemma 4.2.8. For any closed immersion i : Z — U such that i(Z) + U, we have
H"(Z,i*Gp) =0 for all r > 1.

Proof. Since H"(Z,i*Gp) = @,y H(v,i*Gy,) hence it is enough to prove it when Z =
Spec(k(v)) is a point. If i : v — X is a closed immersion, then i*G,, is the g,-module

(i*Gm)(Spec(k(v))) = (Gm)y = lim R* = Oy™"

—
R/0Oy
unramified

so since OU"* is g,-cohomologically trivial, we have the result. O
Remark 4.2.9. If K is a number field, we have the long exact sequence

0— H)(X,Gm) — O — P Kj/K;* — H}(X,Gm) — Pic(X) — 0

v real

In particular,
H2(X,Gp) = {a € Of : oy(a) > 0 for all real embeddings o, }
is the group of totally positive units, and
HY(X,G) = ArDiv(X)/{a € K* : oy(a) > 0 for all real embeddings oy, }

Is the narrow class group (see [ 1)
The long exact sequence for compact supported cohomology given by the triangle

0—Gm—>g*xGy— @(iv)*z—)O

veX0

Is
HY(X,g *Gm) = €D Z— HY(X,Gm) — Hi (X, g % Gm)

veX0

and by the exact sequence::

0— HY(X,0:Gm) = H(X,0.Gm) = K* — P K /K;? — HYX, g.Gm) — 0 (Hilb 90)

v real
we deduce that Hg (X, g«Gpy) is the group of totally positive elements of K* and since K* —
Dy vea K /K2 is epi HY(X, guGm) = 0.
4.2.3 Locally constant sheaves

We generalize the ideas given in Section 1.2 to locally constant sheaves:
Throughout this subsection, U will be considered affine, and S would be the set of places not
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in U. We have in the notations of Section 1.2, Gs = 711(U, n) by definition, and by definition
of fundamental group we have equivalences of categories

(U) <—> (U, n) — mod’

FEt(
IYonedé/

L.c.c. sheaves

Which generalizes in
L.c. Z-constructible sheaves <(_i> (U, n) — mod/?

Consider the normalization U of U in Ks (the maximal extension of K ramified outside S),
i.e. U = Spec(0Os) by definition. Then U/U is the uninversal Galois covering with Galois
group Gs. Notice than moreover 7T1(l~J, n) = 0 by definition. In particular, every locally
constant sheaf F on U becomes constant on U

Proposition 4.2.10. Let F be a lL.c. Z-constructible sheaf on U and M = F,. Then H"(U, F)
is torsion for r > 0 and we have

H"(U, F)(¢) = H"(Gs, M)(¢)
for all ¢ invertible on U and ¢ = char(K).

Idea. The idea is to use the spectral sequence for the Galois cover U/U:
H"(Gs, H*(U, F)) = H"*(U, F)

Hence it is enough to show that H5(U, Fp) is torsion and Hs(U, F)(€) = 0 for the required
0.

For the base pass, Hi(f], Fp) = Hom(m(ﬁ, n), M) = 0 since m(ﬁ, n) = 0.

For the general case, since Fj; is constant, hence we need to consider three cases:

o Iy = Z/tZ, £ is invertible on Os
We have F i = ¢ and we have by Kummer exact sequence

0 — Pic(U) 5 Pic(U) — H*(U, Fy) — (H*(U) — 0

And by some consideration on the groups one can show that HQ(ﬁ, Fy) =0 (see [ ,
11.2.9]). Then if we take a finite totally immaginary extension K C L C Kgs containing
the ¢-th roots of 1, we have for proposition 4.2.2 H"(Up, G,,) = 0 since L has no real
primes.

e I'y = Z/pZ, p = char(K)
We have Artin-Schreier exact sequence, and since H"(Uyy, Gq) = H"(Uzar, O) = 0 for
r> 0.



4.5. GLOBAL ARTIN-VERDIER DUALITY: THE THEOREM 67

o = =7
U o~
H" (U, 7Z) is torision for [ , 11.2.10], and we have the exact sequence

07257 7Z/nZ —0

So from the previous points we deduce H" (U, Z)(¢) = 0 and H"(U, Z)(p) = 0

From the long exact sequence

H}(U,F) — H"(U,F) » B H (K, F,) —

veS

we deduce some nice properties (see [ , 11.2.11])

4.3 Global Artin-Verdier duality: the theorem

We have proved that there are trace maps H2(U,Gp,) = Q/Z which commute with the
restriction maps, so the cup product pairings give a pairing

Ext},(F,Gpm) x H>"(U,F) — Q/Z

which gives maps a (U, F) : Ext},(F, G,,) — H2~"(U, F)*. The goal of this section is to prove
global Artin-Verdier duality:

Theorem 4.3.1. Let F be a Z-constructible sheaf on an open U of X.
(a) For r = 0,1, Ext;(F,Gp,) is finitely generated and a" induce isomorphisms:
Ext{)(F,Gm)" — H " (U, F)*
For r > 2, Ext;(F, Gn) are torsion of cofinite type and o is an isomorphism.

(b) If F is constructible, then
Ext)(F,Gpy) x H7"(U,F) — Q/Z
is a perfect pairing of finite abelian groups for allr € Z

Remark 4.3.2. If we have a triangle 0 — F’ — F — F” — 0, and the theorem is true for two
of the terms (say F and F”), the long exact sequence will imply that Ext},(F’, Gp,) is finitely
generated, so its image in the torsion group Ext%(F ", Gp) is finite, hence the long exact
sequence remains exact if we complete the first six terms, so the theorem is true also for
the third one.

We will set a (U, F) the map we are looking for, i.e.

o' (U, F) : Extt)(F, Gp) — H3"(U,F)* ifr =0,1
o’ (U, F) otherwise

&) - {
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Lemma 4.3.3. Theorem 4.3.1 is true if F has support in a closed subset, i.e. if F = i,M
where M is a sheaf on a closed subschemei:Z — U.

Proof. Since Z = ||, v is a finite union of closed points, we can reduce to the case when
Z = v is a closed point.
We have for lemma 4.2.1, we have in D(U) the exact sequence

0— Gm — g*Gm = Rg*Gm - @ (iv)*Z -0
velUo
We have Exty (i.F, RgiGm) = Ext; (g*i+F, Gpm) = 0 and since i, are exact functors, Ext{((iy)«F, (iu)«Z)

Ext} ((iy)*(iv)«F,Z) = 0 if u # v, so the long exact sequence gives isomorphisms

Ext}(i.F,Gy) = Extt"Y(F, Z)

~

So if M is the g,-module corresponding to F we have for proposition 4.2.5 that H> (U, i, F) =
H3-"(U,i,F) = H5"(gy, M)

I

Ext))(i,F,Gm) x H2"(U,i,F) —— H3(U,Gp) Q/Z

Engv_i(M,Z) x H3 (g, M) —— H?*g,,Z) = Q/Z

So the theorem comes from Tate duality for g, = 7. O

Lemma 4.3.4. For any Z-constructible sheaf, Ext(;(F,Gy,) are of finite type for r = 0,1,
of cofinite type if r = 2,3, and finite for r > 3. If F is constructible, every group is finite.

Proof. If F = Z, then Ext{;(F,Gp,) = H"(U, Gp) which have already been calculated. Using
the exact sequence which defines Z/nZ, we have the theorem also for F = Z/nZ, hence for
all constant Z-constructible sheaves.

If F is locally constant Z-constructible, there exists a Galois cover st : U — U with Galois
group G such that 7*F is constant associated to a G-module M (see | , Prop 5.8.1]), we
have by the Ext composition with the constant sheaf Z (which is flat)

RI'(G, RHomy (M, Gp,)) = RHomy(M, Gp,)

And since RI'(G, _) : Ds4(G) — Dyg(G) and Dyin(G) — Dfin(G), the lemma for M implies the
lemma for F.

Finally, if F is any Z-constructible sheaf, let j : V — U be the open such that j*F is locally
constant and i : U\ V — U be the closed complement. We have the exact sequence

0— jijffF - F — i,i*F — 0

Notice that i,i*F has support in a finite subset, so we can use the previous lemmma and get
the long exact sequence

Ext{;\iv(i*F, Z) — Ext})(F,Gpm) — Ext}(i*F, Gp)
The lemma is true for Ext},(7*F, Gp,) since j*F is locally constant, Ext’{f\%,(i*F ,Z) = Bsinite Ext'"Y(F,,Z

and for Tate duality over finite fields it is zero for r = 0, finitely generated for r = 1, finite
for r = 2, torsion of cofinite type for r = 3 and zero otherwise, so the lemma follows. [
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Lemma 4.3.5. Letj: V — U be open nonempty and F a Z-constructible sheaf on U. The
theorem is true for F if and only if it is true for j*F on V.

Proof. We have Exty;(jij*F, Gm) = Ext,(j*F,Gm) and HL (U, jij*F) = HL(V,j*F) for proposi-
tion 4.2.5, hence a’ (U, jij*F) can be identified with a”(V,j*F), and since the theorem is true
on the closed complementary since it is finite, we conclude using the exact sequence that it
is true on F if and only if it is true on jij*F if and only if it is true on j*F O

In particular, the lemma shows that it is enough to prove the theorem for locally constant
sheaves on a suitably small U.

Lemma 4.3.6. Consider K'/K a finite Galois extension and st : U — U the normalization
morphism, F’ a Z-constructible sheaf on U’

(a) There is a canonical map Nm : m,Gpyr — Gy

(b) The composite

N : Exti(F', Gm) — Exts(m,F, 1.Gm) 2 Exts (. F, Gu)

is an isomorphism
(c) a"(U’, F’) is an isomoprhism if and only if a’(U, 7, F’) is an isomorphism.

Proof. (a) Consider V — U Altale. After [ , 1.3.21] there is L a finite separable K-algebra
such that V — Up, is an open immersion, where Uj, is the normalization of U in L. By
definition, if V' = V xy U, T(V, 1,G ) = T'(V’,Gp). Since V' is finite over V and Altale,
hence normal, over U, it is the normalization of V on K’ ®x L. Hence the norm map
K’ ®k L — L induces a unique norm map I'(V, 1,Gp,) = T(V',Gp) = Op (V') — Op(V)*

(b) Consider j : V — U’ the open subset such that rj : V — U is Altale. Then we have
(7tj)1 = m4jiy and an adjunction map (71j):(;1j)*G — G, and since we have that j*1*G,,y =
Gmy, the adjunction map induces a canonical map

tr: () Gmy — Gmu

and since s is finite, Riyt, = 51, so the map passes to the derived category. So we have
a canonical map

RHomy (j*F, G ) — RHomy (7)ij*F', (1) Grm) > RHom((7t/)ij*F', Gpn) = RHom(7.ij* F', Gyn)

And according to [ , V, Prop 1.13] this canonical map is an isomorphism.
Since again j*Gpyr = Gpy, we have a canonical isomorphism given by the adjunction:

RHomy, (jij*F', Gm) — RHomy (j*F’, Gm)

And the composition of this two isomorphism is N, so the theorem is true for jj*F.
If i : v— U is a closed point, then for i,F we have for lemma 4.3.3 that the sequence of
maps is given by

Ext/=! (F',Z) — Ext; " (m.F, ) 2 Exti 4 (n,F, Z)
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Hence the general case follows from the triangle

0— jij*F - F - i,i*F — 0

(c) We have that since s is finite, HY (U, r,F’) = HI(U’, F’), and the norm map induces
H3(U, 1,G ) Nm, H3(U,Gp,). By definition, for all w|v ¢ U the following diagram

commutes:
Br(K.,) —— H3(U,Gp)
[sim [
Br(Ky) —— H2(U,Gp,)
And since

Br(K,) ™5 Q/Z
[
Br(K,) /> Q/Z

Commutes, we have
HCS(U’,Gm) — Q/Z

[pm H
H3(U,Gp) — Q/Z

So we have a commutative diagram

Ext!,(F/,Gm) x H3T(U,F) —— H3U,Gm) = Q/Z

Js | [ |

Ext},(,F,Gp) x H3 (U, mF) —— H3(U,Gp) = Q/Z
0

Lemma 4.3.7. (a) If F is constructible, then HZ(U,F) is zero for r > 3, and if F is Z-
constructible, then it is zero for r > 4.

(b) If F is constructible and K has no real places, then Ext{;(F,Gp,) =0 forr > 4.

Sketch. (a) Consider an open V C U and use the exact sequence
HJ(V,Fy) - H(U,F)—» P H"(K,,F.)
veU\V

And for local Tate duality we have H"(K,, Fy) = 0 for r > 3, so we can consider F locally
constant such that in the number field case mF = 0 for m invertible on U.
By definition, if we show that

H"(U,F)— P H"(Ky, F)

v real
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is an isomorphism, we have H! (U, F) = 0. We have that this morphism identifies with

H"(Gs, Fy) = P H"(Ky, Fy)

v real

which is an isomorphism for r > 3 except if the order of F, is divisible by char(K),
and using some technical lemmas one can show that in this case H"(U,F) = 0 forr > 3
(see [ , 11.3.12]).

If now F is Z-constructible, then Fy,, is constructible and exact sequence

0— Ftor > F— Fy —0

shows that it is enough to show the theorem for F torsion free. Since we have the long
exact sequence
0 — H: YU, F/mF)— H!(U,F) ™ H'(U, F)

we have a surjection
H' YU, F/mF) - n,H(U,F)

and for the previous result H.~'(U, F/mF) = 0 for r > 4, hence it is enough to show
that H (U, F) is torsion for r > 4. But since we are assuming F locally constant, we
have the long exact sequence

B H 'Ky, F,) - HL(U,F) — H"(U, F)

veS
and since B, .5 H"(Ky, Fy) is finite for r > 0, and H"(U, F) is torsion, we conclude

Since K has no real places, for r > 3 H"(U,F) = H:(U,F) = 0. If F has support in a
closed subset, i.e. it is of the form i,F with i : Z — U a closed immersion, the result
comes from the isomorphism

Ext"(i,F,Gm) = Exty, \(F, Z)

which is zero for r > 3 for local Artin-Verdier duality. So we can assume F to be locally
constant. So in this case &xt"(F,G;,) = 0 for r > 1 and torsion for r = 0,1, hence a
direct limit of constructible sheaves (see lemma 2.2.3). So since Z is finitely presented,
we have that if 8xt°(F,Gy,) = lii)nPi

H"(U, 8xt5(F, G)) = lim H" (U, P;)

which is zero for r > 3, hence , since

Ext},(F,Gy) = H'(RT(U, R¥Com(F, G ) = @ HY{U, 8xt/(F, Gpm))

i+j=r

which is zero for r > 4.
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Lemma 4.3.8. If a"(X,Z/mZ) is an iso for all r and m > 0 whenever K has no real places,
then theorem 4.3.1 is true.

Proof. The assumption says that theorem 4.3.1 is true for F constant on X, and so for
lemma 4.3.5 implies that it is true for F constant on an open subset U.

For lemma 4.3.5, it is enough to prove the theorem on U such that F is locally constant on
U and 2 is invertible on U in the number field case. The previous lemma says that if K has
no real places a’ (U, F) is an isomorphism (it is the zero map) for r < —1, so we need the
induction step. Consider st : U’ — U an Altale covering such that F is constant on U’ and
such that U’ is the normalization of U on an extension K’/K with no real places. Then s,
is exact and s, T*F — F is epi, so consider the exact sequence

0—-F —-mmtF—-F—0

Since 71*F is constant by definition, also s, t*F is constant, so by hypothesis a' (U, m,7t*F)
is an isomorphism. and F’ is locally constant by definition. Then we have a commutative
diagram

Exti (o F, Gm) — Exti ' (F, Gm) — Ext((F,Gm) — Extj(mar*F,Gm) — Ext)(F’,Gp)

l(l) l(Q) l@ l(lt) l(lt)

H* (U, mum*F)* —— H*"(U,F')* — H3"(U,F)* — H3"(U, mr*F)* — H5"(U, F')*

which can be replaced in degree 0 and 1 by the completion

So by induction hypothesis, (2) is an isomorphism, and by assumption (1) and (4) are iso-
morphism, so (2) is a mono for all locally constant sheaves F, then (4) is a mono, so (2) is
an iso, hence the theorem is true. O

So from now on we will suppose K with no real primes, hence in this context H: (U, F) =
H"(X,jiF), and in the case U = X we have H! (X, F) = H"(X, F).
We need now a technical result:

Lemma 4.3.9. For any Z-constructible sheaf F on U, there is a finite surjective map
m : Uy — U, a finite map 5o : Uy — U with finite image, constant 7 constructible sheaves
F; on U; , and an injective map F — @, Fj.

Proof. Let V be an open subset of U such that Fy is locally constant. Then there is a finite
extension K’ of K such that the normalization st : V' — V of V in K’ is étale over V and
Fy is constant. Let 71y : Uy — U be the normalization of U in K’, and let F; be the constant
sheaf on Uj corresponding to the group I'(V’, Fy/). Then the canonical map Fy — . Fy
extends to a map a : F — m,F; whose kernel has support on U\ V. Now take U, to be
an étale covering of U\ V on which the inverse image of F on V\ U becomes a constant
sheaf, and take F, to be the direct image of this constant sheaf. O

We denote as usual the dual maps of a®~"(U, F) as B*(U, F) : H5(U,F) — Ext%f’”(F, Gm)*,
and we will first attack the theorem for constructible sheaves, where it is enough to prove
that 8" is an isomorphism.
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Lemma 4.3.10. (a) Fix ro > 0. If for all r < ro, all K and all F constructible on X B" is

an iso, then B is mono.

(b) Moreover, assume that (X, Z/nZ) is an iso if »(K) = n(K), then a™(X, F) is an iso

for all K and all F constructible

Proof. (a) Consider a torsion flasque injection F — [ (e.g. Godement resolution, which is

(b)

torsion since F is constructible). So I is a filtered colimit of constructible sheaves, and
since H™(X, I) = 0 and filtered colimit is exact and commutes with the cohomology, for
all c € H™(X,F), ¢ # 0 there exists an embedding F — F’ with F’ constructible and
such that ¢ +— 0. Then, since Q = F/F’ is constructible, we have a morphism of long
exact sequences:

H (X, F) ——— 07X, Q) ——— H(X,F) —— HY (X, F) —— -

i | s |

Ext’ " (F, Gp) —— Ext(F, Gm) —2— Exti™(F, Gm) —2 Ext O (F),Gp) — -+

Since i1(c) = 0, then ¢ = ji(c’), and since ¢ + 0 ¢’ ¢ Im(H™ (X, F’)) hence p'(c) =
B"(j1(c") = ja(2)(c’), and since (1) and (2) are isomorphisms, (2)(c’) ¢ Im(Extlf]“ro(F ", Gm))
hence B™(c) # 0. This works for all ¢, so B is mono.

Consider U small enough such that there exists a Galois extension K'/K with ,,(K’) =

m(K) for some m such that mF = 0, and such that if U’ is the normailzation of U
in K’, then Fy is locally constant and U’ — U is étale. Following the construction
of the previous lemma, we can take U; as the normalization of X in K’ and consider
F — F, := mFy @ o Fy, then my,Fy has support in a finite set, so (X, /. Fp) is an
iso for lemma 4.3.3, and by hypothesis B (U, F}) is iso, so by lemma 4.3.5 B (X, 711, F1)
is, hence B"(X, F,) is. So we have that again Q := F,/F is constructible, so we have a
diagram:

HP (X, F) ——— HP7(X, Q) ———— H(X,F) ——— HV (X, F) —— -

lm l@) lm l(!t)

Exts " (F, Gp) —— Ext(F, Gp) —2— Exti ™ (F, Gpm) —2 Ext O (F),Gp) — ---

Where (1), (2) and (4) are iso, so (3) is mono for all constructible sheaves, hence (5) is
mono, so (3) is iso.
O

We can now attack theorem 4.3.1 in the constructible case:

Proof of theorem 4.3.1 in the constructible case. We prove by induction that " is an iso-
morphism:

For r < O, it is the zero map, it follows from lemma 4.3.7.

Consider the long exact sequence

Exty(Z/nZ, Gp) — H'(X,Gpm) = H'(X,Gp)



T4 CHAPTER 4. ARITHMETICS: ARTIN-VERDIER DUALITY

By the calculation on H" (X, G,,), we have that Ext‘; (ZInZ, Gp,) = %Z/Z, and since H(X, Z/mZ) =
Z/mZ, so B°(X,Z/mZ) is an iso, hence B°(X, F) is an iso for the previous lemma, so (X, F)

is always mono.

By class field theory, one can see that #H!(X,Z/mZ) = #Pic(X)ym = #Ext*(Z/mZ, Gp,), so
BY(X,Z/mZ) is a mono between finite groups of the same order, hence an iso, so 8!(X, F)

is an iso for all F, and B%(X, F) is always mono.

So it remains to show that for all r > 2 and all K such that ,(K) = ,,(K) we have
Br(X,Z/mZ) iso. So suppose now m prime with char(K), hence ,(K)Z ,(K) = Z/nZ.
Consider U C X where m is invertible and i the immersion of the complement, we have
the morphism of exact sequences

HI(U,Z/mZ) —— H"(X,Z/mZ) —— H"(X,i,Z/mZ)
lBP(U,Z/mZ) lBF(X,Z/mZ) lB’”(X,i*Z/mZ)

So by five lemma B%(U,Z/mZ) is mono. And since Exti;(Z/mZ),G, = HY(U, ,) and
H!(X,Z/nZ) have the same number of elements (see | , 11.2.13]), so B%(U,Z/mZ) is
an isomorphism.

B3 comes from the pairing

Hom(Z/mZ, G ) x HX(U, Z/mZ) — H*(U,Gp)

and since m is prime with char(K), w have by hypothesis that there is a noncanonical
isomorphism Z/mZ = ., so since H2(U, Z/mZ) = %Z/Z for Kummer since H?(U, G,) = 0.
So B% is an iso, and since for r > 3 H!(X,Z/mZ) = 0, B = 0 is an isomorphism, so
B"(X,Z/mZ) is always an isomorphism.

Let now p = char(K) > 0. We have Artin-Schreier

0— Z/pZ — Gg — Gqg — 0

which gives H" (U, Z/pZ) = 0 for r > 2, so B" is an iso for r > 3, and since Hom(Z/pZ, Gp,) =
Ker(Hom(Z, Gm) 2 Hom(Z, Gm)) = Ker(Gm(X) & Gm(X)), but X is chosen such that p is
invertible, so Hom(Z/pZ, G,,) = 0 and 8° is also an iso.

We need to show that B2 is an iso, but we already know it is injective and by the same idea
as before the groups have the same order, so 82 is also an isomorphism. O

We can now prove it in full generality:

Proof of theorem 4.3.1. The only thing left to prove is that a" (X, Z) : H"(X, Gp)" — H>"(X, Z)*
is an isomorphism. Consider the exact sequence

0—-7Z—Q—Q/Z

And since Q/Z = lim Z/nZ for the previous theorem we have a canonical iso*

lim Ext" (Z/nZ, Gp) = H"(X, Q/Z)*

n

“the cofiltered limit is exact for Mittag-Leffer conditions: the groups are finite
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In particular, we have the exact sequence
H'(X,Gm) = H'(X,Gm) — Ext™*YZ/nZ, Gp) — nH'(X,Gm) — 0

So by Mittag-Leffer conditions (we have no real primes here) we can apply lim and get
“n

0 — lim(nH"(X, Gm)) — imExt"*Y(Z/nZ, Gp) — lim(aH"*1(X,Gp)) — 0

—
n n n

Recall that if X is a number field with no real primes Ox(X)* is finitely generated, Pic(X) is

finite and H"(X, Gy,) = 0 for r # 2, so nH"(X, G,,) are cofinal between the open subgroups

and so lim (nH"(X,G,)) = H' (X, Gy,)". In the function field case Ox(X)* is finite, Pic(X) is
“—n

finitely generated and H"(X,G,,) = 0 for r + 2, so again lim (nH"(X,Gy,)) = H'(X,Gp)".
“n

Hence we have a morphism of exact sequences

0 — H'(X,Gm)" —— lim Ext"™*Y(Z/nZ,Gm) —— lim (H"*1(X,Gm)) — 0
l “n “n
H3“F(X,Z)* — 5 H> (X, Qlz) ——— H?2r(X,Q)*
And since RI'(X,Q) = RHomy(Z, Q) = RHomy(Z, Q) = Hom(Z, Q), so
H?>7"(X,Q) = H>"(X,Q) =0for2 —r >0

Hence for r < 1 we have H>"(X,Q/Z) = H3"(X,Z), and for r < 1, H"*1(X,G,) is finitely
generated, so lim (,H"*1(X,Gp)) = 0, so H'(X,Gn)" = lim Ext""Y(Z/nZ,G,,), and so
“n “n
a’(X,Z) is an iso for r < 1.
For r > 3 and r = 2 it is the zero map, so the only one left to see is r = 3, which is
H3X,Gm) £ Q/Z — HX,Z)" = Z*

which is obviously an isomorphism. O

Remark 4.3.11. In the context of derived category, if F € D/,,.(U), then we have quasi
isomorphisms
Hompx)(F, Gm[3 - r]) = Homgz(RT'c(X, F[r]), Q/Z)

Corollary 4.3.12. Let m be invertible on U and F be a constructible sheaf of Z/mZ-
modules. Then we have a perfect pairing of Z/mZ-modules:

HZ (U, F) x Extg b o (F) m) — Z/mZ,

Proof. Since Extzng'Z /mZ)(F , m) = Ext‘;’f’”(F , Gm) we have by Artin-Verdier duality a perfect
pairing
H{ (U, F) x Ext3ty 2 mz (Fr m) = HO(U, m) = ZImZ

The last equality follows form Kummmer. O
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4.3.1 An application

Let K be a number field, and let F = Z, so Ext! (Z,Gm) = HY(X,Gp) = CI(X) is finite. On
the other hand, since H"(X,Q) = 0 for r > 1 and H"(Ggr,Q) = 0 for all r, so Hl(X,Q) =0
for r > 1. Hence H?(X,Z) = H!(X, Q/Z).

Since H'(Gr, Q/Z)* = Hom(Z/27Z,Q/Z)* = 7Z/27, if a is the number of real embeddings, we
have the exact sequence

(z/272)" — HY(X,Q/Z)* = m(X)*® — H(X,Q/Z)* — 0
So Artin-Verdier duality gives an isomorphism
CUX) 3 m (X)?P /M

Where M is a 2-primary component. In particular we find again the Hilbert Class Field:
m(X)ab classifies all the unramified extensions of K and M individuates the extensions
which ramify at infinity. So sty (X)?®/M Z Gal(Hg/K) and the isomorphism is the classical
one

ClUX) — m(X)*/M



Chapter 5

Higher dimensions

5.1 Statement of the duality theorem

Let us keep the notation of the previous chapters. Now st : ¥ — U will be a separated
morphism of finite type pure of dimension d, and for any F < fot(Y) we will define

RT.(X,F) = RT.(U, RmF)

Remark that as seen in theorem D.3.4, if F € Dstf(Y) then RmF € Df:’tf(U), S0 as it is seen
in Artin-Verdier proof, HZ (Y, RmF) are finite.
Recall that the trace map defined in Section 3.1 gives an isomorphism R*!m 24 = 7Z/mZ,

hence tensoring with ,, we have an isomorphism
2d d+1 ~
R ﬂ],n = m

We have now that ,, is a flat sheaf of Z/mZ-modules, hence , % 1= W ® m SO we
can use the definition
ZImZ(d) = &4

also on the derived category. We have that

2d+3
H245(Y, Z/mZ(d +1)) = H***5(RTo(U, RmZ/mZ(d +1)) = 5 HL(U, R*** "' mZ/mZ(d + 1))
r=0

And since R"mZ/mZ(d + 1) is constructible on U, we have Artin-Verdier duality, so
HE (U, R2H5Tmz/mZ(d + 1)) Z Ext® " (R "mZ/mZ(d + 1), Z/mZ(1))*

Hence it is zero for r # 0,1,2,3, but since R"m £9*! = 0 for r > 2d, we have
H24*3(RT (U, RmZ/mZ(d + 1)) = H>(U, R*mZ/mZ(d + 1)) = HX(U, )

and by Kummer theory and the fact that H*(U,Gp,) = 0, we have H(U, ) = Z/mZ we
have a trace map
H23(Y, Z/mZ(d + 1)) £ Z/mZ

and a pairing

ExtSyy my(F, ZImZ(d + 1)) x HE4*57 (Y, F) — HZ**3(Y, Z/mZ(d + 1)) = Z/mZ (Pairing 5.1)

7
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Theorem 5.1.1. Let ;1 be smooth separated of pure dimension d, F constructible such
that mF = 0. Then Pairing 5.1 is perfect.
Proof. We have that according to [ , XVIIT] Rt £ 29+1[2d] and

Rt RFComsn(y z/mz)(F, R ) = R¥FComgn(v,z/mz)(RMF, m)
So, on the LHS we have

RF(U, RJT*R%OmSh(ylz/mz)(F,Z/mZ(d + 1)[2(1])) =RF(Y, R?PComSh(y,Z/mZ)(F, Rn'Z/mZ(d + 1))[261])
RHompy 7/mz)(F, ZImZ(d + 1))[2d])

And on the RHS we have
RI(U, R¥Comspy,z/mz)(RmMFE, m) =Hompy z/mz)(RmF, m)=Hompwy)(RmF,Gmn)
So we have by Artin-Verdier duality
EXtE s 7imz)(F, ZImZ(d + 1)) = Extj(RF, Gm) = HS (U, R F)*
And this proves the theorem O

Recall that if i > 0 and mF = 0 we defined F(i) = F®Z/mZ(i) and F(—i) = $Com(F, &i).
By the same argument as before and by lemma 3.2.2, it passes to the derived category

Corollary 5.1.2. In the hypotheses above, if F is locally constant we have a perfect pairing
H"(Y,F(—d —1)) x H2X*5°"(V,F) - Z/mZ
Proof. Since
RT(Y, R¥lom(F,Z/mZ(d + 1))) = RHom(F,Z/mZ(d + 1))
we have that H"(Y, F(—d — 1)) = Ext"(F,Z/mZ(d + 1)), so it follows from Pairing 5.1 O

5.2 Motivic cohomology

5.2.1 Locally logarithmic differentials

Let S be a perfect scheme of characteristic p and X — S be an S-scheme. As it is done in
Section D.1, we have the Frobenius map

Fr:X—X

So Fr, : Shgy (X, Ox) — Shjp(X, Ox) acts as the identity on the abelian group and changex
the action of Ox by fa +— fPa. In particular it preserves locally free Ox-modules.

Recall, as it is defined in [Sta, Tag 01UM] the sheaf of differential forms Q{, /s and consider
the complex

050k Qb .. Q= Qb &
— UX = 2dyyg .-+ 8lyis = Noynbyys =7 -

Let QF, /S.cl be the kernel of d¥, i.e. the sheaf of closed r-forms.
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Lemma 5.2.1. We can define a unique family of maps C" : Q’{,/Slcl — QY5 such that
(@) C"(1) =1

(b) C"(fPw) = fC"(w) for all f € Ox

(c) C"3(w A ) = C'(w) A C" (o)

(d) C"(w) = 0 if and only if w = d"~ ')

(e) CHfP~1df) = df.

Proof. | ]

Remark 5.2.2. Since Q%/S,Cl = (Ox)P = Oy, for all fP € Q?,/S’C, we have that C(fP) = f, so in
degree 0 the Cartier map is the Frobenius.

Theorem 5.2.3. The map C" — id is epi, so if we denote its kernel as vi(r) we have an
exact sequence

0— nn) — Qr&;/s,cl Liii*A QI&}/S —0
Proof. Consider a geometric point P and a suitably small neighborhood U such that we
have a local system x1...x, and let u; = x; — 1 Choosing U suitably small we have u;
invertible.
So for every w € Q’{,/S(U) we have that there are f; € Ox(U) such that we can write

du; du;
w=Y_f e RN e

Ui uj,
As now, by definition of C" we have
du 1 du
CH=5) = CH( PP du) = —CH(uP ™ du) = — -
So we have:
(id - C)gP 2 o n D)~ (gr - gD pL L p D
Uj uj, ujy uj,

In other words, we need to prove that there exists an Altale neighbourhood of P such that
there is g such that gP — g = f;. This can be done by taking the Artin-Schreier unramified
extension of the Zariski local ring Ox p. O

With the same idea, one can define v, (r) as the kernel of the map induced to the n-Witt
vectors WH(QQ/S’CI) — n(Q’;,/S), which is an exact functor.
The wedge product pairing on 25, 4 defines a cup product pairing

V(i) x vu(j) — vu(i + )

Theorem 5.2.4. Let Y be a smooth proper variety of dimension d over a finite field k.
Then we have a trace isomorphism HY*'(V,v,(d)) £ Z/p"Z and the cup product induces
a perfect pairing of finite groups

H" (Y, v(i)) x H1" (Y, vp(d — i) — Z/p"Z

Proof. See | ] for the case n =1 or dim(V) < 2, | ] for the general case.
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5.2.2 Motivic cohomology

Let Y be a regular scheme over a field of characteristic p (can also be zero). Lichtenbaum
conjectured the existence of objects Z(r) € D(Ye¢) such that

(@) Z(0) = Z, Z(1) = Gm[—1]
(b) For ¢ + p and for all n there is a triangle
7)) 5 zi) — z/en ) (be 5.2)
and there is a triangle
Z(i) B Z{i) — vali)[ 1] (bp 5.3)
(c) We have canonical pairings Z(i) x Z(j) — Z(i + j)

(d) H>(Z(i)) = Gry(¥Kj) (the y-filtration of Quillen K-sheaves) up to small torsion, H"(Z(i)) =
Oforr>iandr <0.Ifi+0,also HO(Z(i)) = 0.

(e) If ¥ is a smooth complete variety over a finite field, then H'Y,Z(i) is torsion for all
r + 2i, and H%(V,7Z(i)) is finitely generated.

(f) (Purity) If YV is smooth and i : Z — VY is a closed immersion of relative dimension c,
then if j > ¢ Ri'Z(j) = Z(j — c)[-2c]

There is a candidate for these object proposed by Bloch in [ .

Theorem 5.2.5. Let ;t: Y — U be smooth proper pure of dimension d. Let £ be a prime
such that either ¢ is invertible on U or ¢ = char(K). Assume that there exist complexes
Z(i) satisfying Equation (by 5.2) and that H>*3(V,Z(d + 1)) is torsion. Then we have a
canonical isomorphism

HZHA(Y, Z(d + 1))(6) = (Q/Z)(¢)

and the pairing
H"(Y,Z(i))() x HX**7"(V,Z(d + 1 - i))(€) — H* (Y, Z(d + 1))(€) = (Q/Z)(¢)
kills only the divisible subgroups.
Proof. 1f ¢ + char(K), the triangle of Equation (b, 5.2) gives for all n a long exact sequence
L, H2H3(y, 7(d + 1)) — H2*3(y, 24+ = z0mz - H24v,2(d + 1)) S
So by taking the ¢-torsion and passing to the limit we have an isomorphism

limZ/€"Z = (Q/Z)(6) = HX*4(V, Z(d + 1))(¢)

The second statement follows from the long exact sequences for H®* and H?. The proof for
¢ = p is similar considering the triangle Equation (b, 5.3). O



Appendix A
Global class field theory

A.1 AdAlle and IdAile

Throughout this section, k would be a global field, i.e. a number field or a finite separable
extension of F,(T), the places would be normalized absolute values, Spo, = Sp US. would be
the set of archimedean places with S, real and S. complex, and S = Spo U Sy would be
the set of all places.

If k is a number field, Div(Oy) is the group of fractional ideal and Cl, is the class group. If k
is a function field, then fixing X the corresponding integral proper smooth curve, Div(X) is
the group of divisors, Div’(X) is the kernel of deg : Div(X) — Z and Pic®(X) = Div®(X)/k*
with the diagonal embedding of k*.

For uniformizing the notation, the group of divisors will be denoted multiplicatively.

I recall two basic but important results:

Theorem A.1.1 (Ostrowski). 1. If k = Q, then
Sg ={] "l [ Ip}

Where |- |« is the usual archimedean absolute value and |- |, is the absolute value
induced by the p-adic valuation for every prime number p € Z

2. If k = Fp[T], then
Sq = Al - loor | - Ir4
where | - |« is induced by the degree valuation and | - | is induced by the f-adic
valuation for every irreducible polynomial f € Fp[T]

Proof. | , 11.3.7]
Corollary A.1.2 (Product formula). If k = Q or F,(T), then for all « € k we have

H laly =1
veS

Theorem A.1.3 (Extension of valuations). If L = k[a] is a separable extension with [L : k] = n
and v € S, then there are at most n extensions of v corresponding to the irreducible
factors of the polynomial f, in ks

81



82 APPENDIX A. GLOBAL CLASS FIELD THEORY

Proof. | ]
It is worth it to recall

Theorem A.1.4. If K is complete with respect to an archimedean absolute value, then
E=Rork=C

Hence for any local field the set of its places is well determined.

Theorem A.1.5 (Weak approximation theorem). If vy ---v,, € S are distinct places and
ay---am € k, then for every € > 0 there is a € k such that |a — oy, > €

Proof. | , Theorem 17]
Lemma A.1.6. If @ + 0 in k there are only finitely many places v such that |al, > 1.
Proof. | , [1.12]

With this results, we see that for any a € k, then a € O, for almost all v € S, Then we
can define using the notion of restricted topological product (] , 11.13])

Definition A.1.7 (The ring of adf\iles). Ap = ]—[(‘?V k,. With this definition Aj is locally
compact and there is a natural inclusion k — Ap given by the diagonal. The elements in
the image of this map are called the principal adAlles and they will be still called k

Lemma A.1.8 (Product formula). If L/k is a separable extension, there is a topological
isomorphism
Ap®r L =Ap

which maps k@ L — L
Proof. Conside w; --- w, a basis. The LHS is just

Dw; (9V

l_[ @wikv

veSy
Which by the extension theorem is topologically isomorphic to

OLv

[

veS, Vv

Lemma A.1.9. A,/k is compact and k is discrete

Proof. For the prevous lemmag, it is enough to prove it for k = Q or k = F,(T). The weak
approximation theorem says that for every adAlle (ay), there exists a principal adAlle o such
that a, — a € O, i.e. every coset of k meets ]_[300 k, x ]_[:gf O,. Since ]_[sm k, /O is compact,

there is a compact subset T of ﬂsoo k,, that meets every coset of k, i.e. T x ﬂ'sf Oy — Ap/k



A1. ADALLE AND IDALLE 83

is surjective and continuous, hence A/k is compact since T x ]_[’Sf Oy is.
k is trivially discrete since

D = {lay)y:|ayly <1if v e Sx& ay € Oy if v e Sy}
is an open subset of A and DNk = {0} for the product formula. O]

Since Ay, is locally compact, it admits a unique normalized Haar measure p (see [ 1)
and since Ag/k is compact, it has finite measure. We normalize the Haar measure such that
Ar/k has measure 1.

Corollary A.1.10 (Product formula). []|a|, = 1 for every nonzero principal adAlle.

Proof. if a € k then
plaX) = Jlealon(X)

but since A/k has measure 1, this means [[|aly, =1 O

Definition A.1.11 (The group of idAfles). I, = ﬂ(gv k. With this definition I is group-
theoretically isomorphic to Ay, but the topology is strictly finer (since (_)~! is not continuous
on Ayp), so there is a continuous inclusion I, < A and a continuous multiplication I x Ap —
Ap. There is also the diagonal inclusion k* — I, and the elements in the image of this map
are called the principal idAlles and they will be still called k*

Remark A.1.12. The topology of I, is finer then the topology induced by A, and k™ is
already discrete in Ap, so k* is discrete in I.

Definition A.1.13. We have a continuous map c : I, — R>? given by (ay), — [Tlaw|v. We
define the 1-idAlle I9 as the kernel of c. Notice that by the product formula k* C 19

Remark A1.14. If k is a number field, then c is surjective: it is enough to take an idAile
which has 1 at every non-archimedean places and all archimedean places but one, so it
follows from the surjectivity of the archimedean absolute value.

Lemma A.1.15. Hg is closed in Ay, hence it is closed in I and the two topologies coincide.
Proof. | , 11.16]

Lemma A.1.16. There is a constant C depending only on k such that for every a € Ap
such that [ [ |ay|v > C there is n € k* such that for all v

[n|v < laVIV

Proof. | , 11.13]

Theorem A.1.17. I9/k* is compact
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Proof. It is enough to find a compact W C A} such that W n Hg — ]Ig /k* is surjective. Take
C as in lemma A.1.16 and a such that c(a) > C, then

W .= {5 Iévlv < [aV]V}

Consider B € ]Ig, then c(f~'a) = c(a) > C, hence by lemma A.1.16 there exists n such that

Inly < ]BJiavIv

Hence nB e WnIY, so Wn ]Ig — ]Ig/l(< is surjective. O

Corollary A.1.18 (Class group). If k is a number field, the class group Div(Og)/k* of k is
finite. If k is a function field of a curve X over a finite field, Pic®(X)/k* is finite.

Proof. If D = Div(Og) or D = Div(X) is taken with the discrete topology, there is a contin-
uous map

B+— l—’pg(ﬁ):ﬂgﬁD

VES/

and by definition the image of k* gives the principal divisors, hence [ m(Hg)/kX is compact
and discrete, so finite.

If k is a number field, Im(I9) = Div(Oy) since if I = []gp;", consider 7 a uniformizer of m;
and the idAlle n given by 7ri" " in the places g;, in one archimedean place put m and 1

in all the other places, so n € ]Ig and n— 1
If k is a function field, this fails and for the surjectivity we need to restrict to Div®(X) since
the non-archimedean valuaton ||, is not surjective and does not allow us to compensate.

Corollary A.1.19 (Unity). If S is finite and contains all the archimedean places, then
Hs = {ne k* :|n|y =1,v ¢ S} is the direct sum of a finite cyclic group of roots of 1 and

a free abelian group of order #S — 1.

Proof. This description is given by the map

n+ (log(inly)): Hs — [ [R
S

it has kernel p(k) and image a complete lattice in the hyperplane ) _sx, = 0. See [ )
VI.1.1]

A.2 The IdAile class group

Definition A.2.1. The idAlle class group is the Hausdorff locally compact group

Cp :=I,/k"
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Definition A.2.2. A modulus is a formal product
m =] el
s

where n, = 0 if v is complex, ny, = 0 or 1 if v is real and n, = O for almost all v. If v € &;,
then take UY = Oy and in the other cases:

1+pv CKY ifve S

ple) . R~ if ve Spand ny, =0
T Reo if ve S,and ny =1
o if K, = C

Hence x, € Uj” means x, € 1 + gy’ if v is finite, x, > 0 if v is real, nothing if v is complex

Definition A.2.3. Consider a modulus 9, and take the open subgroup
= [ Jui
m

Then we have the congruence subgroup mod 2 given by
]Iiﬁk*/k* C Cg
and the ray class group
Cr/CP?
Proposition A.2.4. A subgroup of Cy is closed of finite index if and only if it contains
C for some M.

Proof. C{ is open and it is contained in Hi‘x’ =[ls Ky x ns, U;y. Consider the map
(a) — I_[go:,’(a“) : Cp — Cly or Pic%(X)

it is surjective and has kernel ]Iio"kX /R*.
[Ck :Hiwkxlkx] = h where h = #Cl} or #Pic’(X). So

[Cr: CIY] = h[I}*k*/E* : CJ¥] = h2" [ o, U™ < o0
Sy

where r is the number of real places. Hence Cgﬁ is open of finite index, so closed, and
every subgroups that contains Czﬁ is the union of finitely many cosets of C¥, so it is closed
of finite index.

Conversely, take N closed of finite index, it is open, so its preimage in [, contains a neigh-

borhood of 1 of the form
W=] W x| [1+ep
Seo S

where W, is an open ball centered in 1 and n, are suitable integers. If v is real, we can
choose W, small enough such that W,, C R.y. So the subgroup of I, generated by W is
of the form I¥" with 9 = []y", hence CJ* C N. O
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Another definition of the ray class group:

Proposition A.2.5. Let J* C Div(O) (or Div’(X)) be the group of divisors prime to 9,
and let P,Zﬁ C k* be the subgroup (a) such that if v is finite, a = 1 mod 9, and if v is real,
oy(a) > 0 where oy : k — R is the corresponding embedding. There is an isomorphism

Cr/CP 2 TN/ PP =: CI!

Proof. Consider
= {acly:aec UV}

Then I, = Hiﬂk* since by the approximation theorem for every a € I, there is an x € k*
such that ayx = 1 mod p" for v finite and ay,x > 0 for v real, so B := ax € ]IzjZ and
a=pBx L

Iface Hiﬁ N k*, then by definition a € P, so there is a surjective map

avs (a) = [ [t : Cp = I 0 k) — J2/PP
St

If a € CJ, then (a) = 1, so C}' C ker. Conversely, if [a] € ker, a € I\, there is (x) € PY,
x € I¥* N k*, such that () = (x). Consider B = ax~!, then if v is finite B, = 1 mod py* by
definition, and if v is real B, > 0 since a and x, are. Hence 8 € ¥, so 8] € C,Zﬁ, and since
[B] = [a], we conclude. O

Let us suppose that k is a number field, O its ring of integers, O} = Hi‘x‘ N k* the group
of units and (0} )~o = I} N k* the group of totally positive units.

Proposition A.2.6. There is an exact sequence of multiplicative abelian groups

1 —— O;/(07)s0 — [1s, R*/Rsg —— CLLCly —— 1

Proof. Remark that Cl}c = Ck/C,i = ]Ik/]l}gk" by proposition A.2.5 and Cl, = ]Ik/]limkX by
corollary A.1.18.
Proposition A.2.4 gives an exact sequence

1 — I¥R*ILk* — CL/Ch— Cly — 1
and on the other hand we have an exact sequence

1— (I N /(I N k) = O3 /(07)s0 — /Ty = [ [R*/Roo — (I=k*)/([1k*) — 1
Sr

So combining the two we have the result O
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A.3 Extensions of the base field

Let now L/k be a finite separable extension, we have an embedding I, — I}, given by

Ay I_I(av)

wlv

Therefore, an element 8 € [}, is in I if and only if Bw € ky, for all w|v and if wy; and wy
divide v, then By, = Bw,-
In particular, we have that every element of k* is in L*, therefore we have an induced map
on the class group:

Cr— Cp,

which is injective since, f we fix M a normal closure of L with Galois group G:
I, NL* =, N M* = ([, n M*)® =T, nk* =k~

Every isomorphism o : L — oL induces an isomorphism I}, — Iy, trivially since § : Ly, — Ly,
is an isomorphism.

If now L/k is Galois with Galois group G, then every o € G induces an automorphism of
I;, hence I}, is a G-module. It is not difficult to show that we have the Galois descent for I,

I¥ = facl:0a=aforallo e G} =14

Moreover, we have the Galois descent for Cg:
Proposition A.3.1. If L/k is Galois with Galois group G, then Cf = Cp
Proof. We have an exact sequence

1-L"—=I -C,—1
And since H'(G, L*) = 0 for Hilbert 90, the sequence

15k 50— CP—1
is exact, so Cf = Cg. ]

Consider now v a place of k and w|v a place of L. Then every «,, acts by multiplication
on Ly, so we have a norm map

Npok, : Lw — kv Np, /e, (ay) = det{aw(-))

And since if ay, € L}, then Ny (o) € k5 and if ay, € O}, then Np i (aw) = 1, the norm
map extends to the idAlfle:

Nuela) = [ Nogelow) I — T

veSpw|v

The idelic norm has the same properties as the usual norm:
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Proposition A.3.2. i Ifk C L CF, then Nrpjp, = NpjxNrj1

ii If L/k is embedded in a Galois extension F/k and if G = Gal(F/k) and H = Gal(F/L),
then

iii if a € I, then Npp(a) = all¥

iv If x € L*, then N k(x) is the usual norm

Proof. The proof of i —iii is analogue to the case of the norm of a field extension and iv
is immediate.

Remark A.3.3. Since by iv Ny /g(L*) C k*, we have an induced norm
Nec,ic, : CL — Cp
Lemma A.3.4. For any modulus M = [],.s pov" let
M := {x ¢ kK :x = 1 mod M}
If n, is big enough we have

[K* @ (Npg(L*)K*™ = ]_[#G

veS

Proof. For each v fix any w|v, since the extension is Galois, they all induce the same norm
map. For local class field theory N/, Lw C ky is an open subgroup of finite index, hence it
contains 1 + py" if v is archimedean for a suitable np, or R-g if v is real and n, = 1. Hence
define M = [T,q 00"

Then consider M = [], pv* for the n, just found. The natural map

R (NLe(LNE™ — [ ] ki /Niy e, (Ly)
ving#+0

is bijective for weak approximation theorem: if oy € k5, there is x € k* such that x = a,
mod p¢°, 50 X > (ay)y.

If x — 0, ie x = (N, /&, Lw(Bv))v, then again by weak approximation there is y € L such
that y = B, mod Py, hence x/Npk(y) € K™, so x = 0.

We conclude by local class field theory which says that

k; /Ny, ik, (Ly) = [Lw : ky] = #Gy
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A.4 Cohomology of the idAlle class group

In this section, we will prove that if k is a local field, then C;z = lim  Cj, is a class formation
— LIk

for the absolute Galois group Gi. We already defined Tate cohomology in Section 1.1.1
Proposition A.4.1. Let L/k a Galois extension of degree n. Then

e HY(G,C) =0

o #H2"(G, C;) divides n

Proof. See | , VIL.9]

So if L/k is a tower of extension, we have a commutative diagram given by the inflation-
restriction exact sequence and passing to the limit:

0 0 0
0 —— H2(G(L/k),L*) —— H2(G(L/k),I, —— H2(G(L/k),C1) — O

0 — H2%(Gp, k') — > H%(Gp,I) — H%(G, Cg) ——— 0

0 — H%GL k') —— H?(Gp, Iy) ——— H2(GL,Cf) ——— 0
and one can see ([ , VIL.10]) that we have a complex
0 — H2(G(L/k), L*) — H2(G(L/k), 1) ™% Q/z

where inv = Y inv, where invy is the map defined in Section 1.1.3, and since inv,(infl(a)) =
invy(a) the diagram commutes:

H?(G(L/k),1;) —— Q/Z

linf l lid

H2(Gk,HL) _— Q/Z
Hence we have two complexes
0 H*Gr k") — H(Gr Ig) ™ Q/2

0 H*Gy k") - H*(Gy, Ig) ™ QIZ
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and since invy(res(a)) = nyinvy(a) and [[ny), = [L : k] = n, we have a commutative
diagram
H?(Gg, 1) —— Q/Z

[

H?(GL, Iz) — Q/Z

and one can show (| , VII:11.2]) that H?(Gy, Cg) = Q/Z and it is induced by the arrows
just defined, so the class formation axiom

H2(Gy, I) —— Q/Z

[

H?(Gp, I) —— Q/Z

is satisfied.



Appendix B

Etale cohomology

B.1 Sheafification

If F is a presheaf on (8.17) a LEX site, consider a covering {U; — U}, we have the functor
H°({U; — U}, F) given by the kernel

H({Ui —» UL F) — []; F(Ui) — ﬂi,,- F(Ui xu U))
It's functorial and left exact for the properties of the kernel. We can take the cofiltered
category Cov(U)/ ~ given by the refinement condition and we have
F*(U):= HY(U,F):= lim H°({U;— U}, F)
Cov(U)/~

F* is a presheaf, in fact if U — V, {U; — U} a covering, then {U; xy V — V] is a covering,
we have the unique kernel morphism

HO(Ui xyV—V,F)— HO(U,'—> U,F)

induced by F(U; xy V) — F(U;) so for the universal properties of the filtered colimits we
have a natural map
H(V,F) — H(U, F)

We have now that if G is a sheaf, then by definition G*(U) = G(U), so if F 5 G is a
morphism of presheaves with G a sheaf, then for the properties of the kernel 3! map

F+ %, G such that the diagram commutes:

F a G
X V
F+
Recall that a presheaf is separated if the map

F(U) — ]_IF(Ui)

is @ mono for all coverings. We have that

91
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e F* is always separated
e If F is a separated, then V {U; — U} covering, ¥ {V; — U} refinements, the map
H°(U; - U,F) - HV; - U, F)
is injective, hence FI%(U; — U, F) — F*(U) is injective V coverings
e If F is separated, then F* is a sheaf

Proof. [Sta, Tag 00WB]
So we have a functor
a:Psh(B) — Sh(B,T) Fw~ F**

and for the property above
Hompgp(F,iG) = Homsp(aF,G) aw a™*

So a 1i. So we have that
Sh(B, 1) — Psh(G)

is a reflective subcategory, so if D is a diagram in Sh(G, ) such that iD has a limit L in
Psh(@B), then al is a limit of D in Sh(G, 1).
So since (_)** is left exact as endofunctor of Psh(B), a is left exact.

B.1.1 VYoneda

Consider y : 8 — Sh(B, 1) the sheafification of the Yoneda embedding. Take F a sheaf,
X € 6. Then, we have

F(X) = Hompgpg)(hy, F) = Homgpg) (¥ X, F)
Lemma B.1.1. If U; — X is a covering, then the induced map
| [sUi - X
is an epimorphism.
Proof. Consider U; — X By the sheaf property, we have
FX <[ [Fu
is a regular mono. Applying Yoneda lemma and the remark above, we get

Homgpg)(¥x, F) — ]—IHomSh(Gﬂ)(in' F)= HomSh(G)(]_linrF)

1 1

is a mono, so
Homgp ) (yx, ) — Homgpg) (l_[ yU,_)
i
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is @ monomorphism of representable covariant functors in Set5"®), and since the Yoneda
emabedding is fully faithful and countervariant, it reflects monos to epis (and viceversa), so

| [#Ui > wX
is an epi O

Proposition B.1.2. Consider F L Ga morphism of sheaves. If V X € G, ¥V b € G(X) we
have that 3 {U; — X} a covering and a; € F(U;) such that

flai) = By,
Then f is an epi of sheaves.

Proof. Using the isomorphism above, we geta; : yU; — Fand b : yX — G Take s, t: G j H
such that sf = tf. We have

[1yU; LN yvX

b
l(ai) lb S(b ( )

t
F—' .G H
S

The central square commutes by hypothesis and the right triangle commutes by construc-
tion, so we have

s(b)¢ = sflai) = rflai) = r(b)¢
And since ¢ is an epi, we have that V X, V b € G(X) rx(b) = sx(b)=r =s O

B.2 Direct images

Let f : 6 — @ a functor between categories. Consider:

fp :Psh(9) — Psh(G)
F— F(f())

Proposition B.2.1. f, has a left adjoint fP
Proof. Fix X' € @. Consider the category Iy given by
{(X,9),XeB,¢:X — f(X)}

and arrows given by Xj ER Xo such that the following diagram commutes:

£(X1) o) £
o ) o

)
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Consider F € Psh(G)

fPF)X) = 61961})1:{1 F(T)

Such a colimit exists since Set and Ab are cocomplete. We have that (X, id) € Ifx), so we
have

. 3!
fofP(F)(X) = %célﬁgr)l — F(X)

And we have that by definition if X € Iy we have an arrow F(f(X)) — F(X’) (F is counter-
variant) so we have
fP1p(F)X') = colim F(f(x)) = F(X')

Tely

and the triangular identities are given by the universal properties. O
Proposition B.2.2. In the notation above, if G is LEX and f is LEX, then fP is exact

Proof. By definition, if Iy is cofiltered (it becomes filtered applying F), we have that lim

_>IX'

is exact, so it's enough to prove that it's cofiltered. We have

1. Iy # @ since if T is the terminal object of G, f(T) is the terminal object of & and we
have X — f(T) the only map to the terminal.

2. (X1, d1), (Xo, ¢o), consider Xy x Xo, we have f(Xy x Xo) = f(X1) x f(X») and

X
a

~

f(X1) x f(Xe)

N

f(X1) f(Xa)
The diagram commutes so it’s cofiltered.

O]

Take now f a continuous LEX functor, i.e. V {U; — U} covering, then f(U;) — f(U) is
a covering. This trivially means that if F € Sh(®), then f.F := F(f) € Sh(G) so we have a
functor:
f« : Sh(D) — Sh(GB)
such that i'f, = fpi
We have the following diagram:

p

Psh(B) =—— Psh(9)

fo
e e
Sh(B, 1) —— Sh(D, 1)

*

taking f* := a’fPi, it's left exact since it's composition of left exact functors:
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Proposition B.2.3. f* 4 f, and so f* is exact.

Proof. The adjunction follows trivially by fP 4 f,, and the fully faithfulness of the inclusion:

Homgpg)(f*F, G) = Hompgp ) (fPiF,i'G) =
Hompgp(g)(iF, fpi'G) = Hompgp(g) (iF, ifsG) = Homgpg)(F, f+G)

Lemma B.2.4. Comparison Lemma
If f : 8 — B is a LEX fully faithful inclusion of LEX sites such that:

1. If {U; - U} € Covg/(U), U, U; € @, then {U; — U} € Covg(U)
2.YU e€B3{U;— U} e Covsg(U) with U; € G
Then f* and f, are quasi inverse and induce an equivalence of categories

Proof. We need to show that the unit and the counit are natural isomorphisms:

1. Take F € Sh(@'), U € @, we have f,.f*F(U) = (fPF)#(f(U)), so we need to prove that

Fuy - seriu) M fpF(U)
are isomorphisms:

() fPE(f(U)) = lim  F(X)

fv)
We have (U, id) € Ify), and since f is fully faithful, V ¢ : f(U) — f(X) we have that

1Y : U — X such that ¢ = f(¢), (U, id) is the initial object, so the unique map

F(U) — lim F(X)

—

Iy

is an iso.

(ii) By the property 2. we have that if U € @', then Covc/(U) — Cove(U) is cofinal,
S0

f*F(U) = lim H°(U; - U,fPF) = lim H°(U; - U,fPF)
Covc(U) Covcr (U)

since now fPF(U) = F(U) for the previous point

lim FYU; - U,f°F) = lim Ker([ |F(U) = [ |F(Ui xu Uj))
Cover (U) Covr (U)

which is trivially F(U) since F is a sheaf.
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2. Take F € Sh(B), U € 6. Using the triangular identity, we have that if U € @', then
€r(v) is an isomorphism, in fact, since U = f(U) by the fully faithfulness, the triangular
identity is

€F(U)

ff*F(U)

] /

F(U)

F(U)

and 7 is a natural iso.
Now if U € G, take {U; — U’} as in 2., we have

0 FU [IF(Ui)) —— []F(U; xy Uj)
0 — fif 'FU —— [1f.f*F(U;) —— [1f+«f*F(U; xy Uj)
So since the right-hand square commutes, the arrows on the kernels is an isomor-

phism.

O]

B.3 Cohomology on a site

Proposition B.3.1. If (G, 1) is a site, then Psha,(B) and Shap(6) have enough injectives.
Proof. see [Sta, Tag 01DK, Tag 01DL]

B.3.1 Cech cohomology

Let (8, 1) be a site, {U; — U} a covering, F an abelian presheaf. Consider the Cech
complex:
C*{Ui—» UL F):= || FlUy xu ... xv Uy)

(ig...ip)cIR+1

with cobords maps given by

k+1

b ,
d (a)i0~--ik+1 = Z(_i)](aio...}...ikﬂ)IUiOXU---XUUikH
j=0

One can check that this is in fact a complex.
We can take its cohomology

HY(U; — U, F) = HY(C*(U; — U))
By definition, if F is a sheaf, then

H°(U; — U,F) = F(U)
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Proposition B.3.2. H4(U; — U, F) = RY(H)(U; — U, )(F), i.e. HY(U; — U,_) is a universal
cohomological 6-functor.

Proof. One can see that the Cech complex preserves exact sequences of presheaves, so
HY(U; — U, _) is a cohomological 6-functor on Psh(B). We need to show that injectives are
acyclics: Take X € G consider the free functor:

ZX(Y) — ZHom(g(X,Y)
We have that the free functor is left adjoint to the forgetful, so V X, ¥
Homy, (ZHomeXY) P(V)) = Homget(Homg(X, V), F(Y))

natural in VY, so
Hompgp,, @) (Zx, F) = Hompgpg)(hx, F) = F(X)

So we have

CUU; — U, F) = | | Hompany@)(Zuiyxy..x Uiy F) = Hompgh ) @D Zuy xp.xutiy, F)

(ig..iq) (io-.-iq)
So if I is an injective presheaf, Hompgp,, ¢)(_, I) is an exact functor,
@ ZUiOXU---XUUiq~1 — @ ZUiOXUu-XUUiq
(i-wig-1) (io.---iq)

is an exact complex, so

..Hompgp,, ) EB Ly xy...xuly,_, 1) = Hompgp, ) @ LUy xy.xyUgr 1)

(ig-wriq—1) (ig---iq)
is an exact complex, so the Cech complex is exact. O

One can consider again the refinement equivalence relation on Cov(U), and get again
that if {U; — U} and {V; — U} mutually refines, then

HY(U; — U,F) = HY(V; — U,F)

So one can define
HY(U,F):= lim (HYU; — U,F))
Cov(U)/~
And since the colimit is filtered, it's exact, so we have a long exact sequence. Moreover, if
HY(U; — U,I)) = 0 V I injectives and V {U; — U} coverings, we have HY(U,I) = 0, so

HY(U, F) Z RYH (U, )(F)
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B.3.2 Cohomology of Abelian sheaves

Let (B, 1) be a Lex site, X € 6. We have a left-exact functor
FX . ShAb(G, T) — Ab

So we can derive it and get:
HY(X,F):= RY(Tx)(F)

Consider now
i:Sh(B) — Psh(B)

the inclusion functor, which is right adjoint, so left exact. Consider
FCUF) = RI(i)(F) € Psh(6)
In fact, since any arrow U — V gives a natural map 'y — 'y, we have H°(_,F) = F. If
FF—F—F"

is exact, then
HY(X,F") — HI" (X, F)

is natural in X, so we have a long exact sequence of presheaves, and moreover if [ is
injective, then HY(X,I) =0V X, so H4(_,I) =0, so

FCI(F) = HI(_, F)

—

Proposition B.3.3. (FC9(F))" =0Vq > 1

Proof. In fact, i has an exact left-adjoint a, so it preserves injectives!, so we can use

Grothendieck’s Theorem (ai = idsp):

RP(a)R1(i) = RP*9(id)
But a is exact = the SS degenerates at degree 2, so since id is exact

HI(F)# = Ri(id) = 0
So now we have the counit maps
HY(F) — HY(F)* — HI(F)*
the second is mono since H4(F)* is separated, so H1(F)* =0 O
Theorem B.3.4. Let F be a sheaf. We have two spectral sequences
HP(U; — U, H(F)) = HP*9(U, F)

HP(U,HY(F)) = HP*9(U, F)

'Hom(_,iI) = Hom(a(_),I), a is exact, Hom(_, I) is exact since I is injective
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Proof. Since if F is a sheaf, H'(U; — U, F) = H(U, F) = F(U), so we have

2000
H(Ui—U) Ab

Sh(B) —— Psh(@3)
Iy
And again since i preserves injectives, we have a SS

RP(H(U; — U, ))R%(i)(F) = RP*(T'y)(F)

Corollary B.3.5. We have:
1. H%(U,F) 2 HY(U, F)
2. HY(U,F) = HY(U, F)
3. H*(U,F) — H2(U, F)

Proof. 1. is trivial. 2. and 3. follow directly from the exact sequence of low degree terms:

0 —— HYU,F) —— HYU,F) —— H°(U,H'F) =0 j

L H%(U,F) —— H2*(U,F) ———— ...

B.3.3 Flasque Sheaves

Definition B.3.6. F € Sh(@8) is Flasque (or Flabby) if for all U, for all {U; — U} we have
HY(U; - U,F)=0, q>0

It's clear that if F is an injective sheaf, then since i preserves injectives and H4(U; — U, )
is a universal 6-functor, then F is Flabby

Proposition B.3.7. Consider 0 — F' — F — F” — 0 exact sequence of sheaves:
i. If F' is flasque, then it's an exact sequence of presheaves
ii. If ' and F are flasque, then F” is flasque.

iti. If F and G are flasque, then F & G is flasque

Proof. i. Consider the long exact sequence

H(U; > U,F') —— H(U; > U,F) —— H(U; —» U, F")

Q HYU; —» U,F) =0

And since they are all sheaves, we have 0 — F'(U) — F(U) — F"(U) — 0 exact V U.
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ii. Consider the long exact sequence

HY(U; —» U,F) —— HI(U; — U, F") 7

L H*Y(U; — U, F')
If g > 1, then
HY(U; — U,F) = H"*Y(U; - U,F’) = 0= HUU; — U,F") = 0

iii. Since
l_l (F@ G)(Uio XU .o XU Uiq) = l_l F(Uio XU o XU Uiq) D l_[ G(Uio XU .o XU Uiq)
ip...iq ip...iq ip...lq

we have an isomorphism of complexes
C'(Ui—»UFa®G) =C*U;— UF)® C*U; — U, G)
And so
HYU; - U,F® G) £ HY(U; —» U,F)® HY(U; —» U,G) = 0 for q > 1

Corollary B.3.8. If F is a sheaf, then TFAE:

i. F is flasque

ii. F is $(%-acyclic (so HY(U,F) =0 for all U)
Proof. i. = ii. Consider an injective resolution

0 F I I...

NS

L/F

Since F and I; are flasque, then I} /F is flasque, and by induction if I;/I;_4 and Ij;4 are
flasque then I;.1/]; is flasque, so

0 iF ilh ilp...

~ 7

i(I1/F)

is exact in Psh(B), so $C4(F) = R4(i)(F) = 0
ii. = i. Consider the spectral sequence
HY(U; — U, ¥C9(F)) = HP*9(U, F)
It degenerates in degree 2 by hypothesis, so
HY(U; — U,F) £ HP(U,F) =0
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B.3.4 Higher Direct Image

If (G, 1¢) 7, (D, Tp) is @ morphism of LEX site, we have

with f* 4 f, and f* exact, so f, preserves injectives.

If now TV EN T T are morphisms of LEX sites, by definition
(gf)«(F) = F(gf) = f+F(g) = (f«g:)(F)
So since g, preserves injectives we have a spectral sequence
RPf,Rg.(F) = RP*(gf).(F)

Remark B.3.9. f, = afpi’;since i’ preserves injectives and a and f, are exact 2 we have a
spectral sequence degenerating at degree 2

RP(afp)RI({')(F) = RPTIf,.F
So RIf,F = (f,FC4(F))*
Corollary B.3.10. If F is flasque, then R1f,F =0V q > 1

If er the terminal object of a LEX site T, we set
HP(T,F):= HP(er, F)

Remark B.3.11. If f : T — T' morphism of LEX sites, ey the terminal object of T, we have
fler) = er, so (Lepfs)(F) = F(f(er)) = e, so we have Leray’s spectral sequence

HP(T, Rif,F) = HP*4(T',F)

This gives a canonical map
HP(T, f.F') — HP(T', F)

And if we consider F — f,.f*F the unit map, we have a canonical map

HP(T,F) — HP(T, f.f*F) — HP(T',f*F)

B.. Etale cohomology

B.4.1 The small ARtale site
Definition B.4.1. Let k be a field, a finite k-algebra A is Altale if
AZ Ky x...x Ky

with K;/k finite separable.

0 - F/ - F — F” — 0 exact of Psh(3) iff 0 —» F'(X) — F(X) — F’(X) — 0 is exact V X, in particular if
X=fY
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Consider X a Noetherian scheme.
Consider a morphism of finite type Y — X, y € Y, x = f(y)

Definition B.4.2. f is unramified at x € X if the schematic fiber Y, = YV xx Spec(k(x)) is
affine, namely Y, = Spec(B), and B is an Altale k(x)-algebra.

Definition B.4.3. A morphism of finite type ¥ — X is unramified at y € YV if Oxx — Oy,
satisfies

(i.e. it's of relative codimension 0) and k(x) C k(y) is separable.

Remark B.4.4. If f is unramified at y, we have

Ve= || Spectkly) =Spec( [] kly)

yief1(x) yieftx)

Since locally
(Ve)y; = Spec(Oyy, ®oy, Klx)) = Spec(Oy,y,/My,)

So if f is unramified at y, it's unramified at f(y)

Definition B.4.5. A morphism of finite type ¥ — X is Altale at y € V if it's flat and
unramified
f is Altale if it's Altale Vy € V

We have trivially the following properties:
1. Open immersions are Altale, closed immersions are unramified
2. The composition of unramified (Altale) is unramified (Altale)
3. Base change of unramified (Altale) is unramified (Altale)
We have the following:
Lemma B.4.6. Let S L S a morphism of finite type, then TFAE:
i. f is unramified
ii. Axjs: X — X xs X is an open immersion
Proof. See [Sta], Lemma 28.33.13 O

So we have the following

Proposition B.4.7. If f : VY — X, g : Z — Y such that fg is Altale and f is Altale, then g is
Altale
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Proof. Consider the base change

i vy

1%
l l(id g)
X

*> X xsX
Since A is open for the previous lemma, V — X xs V is Altale. Consider then

XXSY%Y

lg J}‘g
X % S

By definition, X xs ¥ — V is the second projection, so it's Altale since f is Altale. Finally
y 149, v o X 2, X is Altale. O

Consider Et(X) the category of the étale X-schemes, we can define the étale topology
Tet on Et(X) as

b upu= Ufl

By the previous proposition, this maps are all étale and the topology is subcanonical.

Definition B.4.8. We define the small Altale site of X

= {Et(X), Tet) }
So we can define V F € Sh(X,t) the étale cogomology of F as
HZ,(X, F) = RP(I'x)(F)

If X' € Xet, we define
HZ(X',F) = RP(I'x)(F)

Proposition B.4.9. Consider Y L Xa morpfism of schemes, we have a morphism of LEX
sites

1
Xet Lo Ve (X5 X))o (X xx V5 V)

Proof. e Since X’ — X is étale and the fiber product of étale is étale, f~1(X’) is étale.

e It is left exact by definition: it preserves final object (X xx ¥ = V) and fiber product
(universal properties and diagram chasing).

e Consider {U; ER U} an étale covering, we need U xx ¥V = U;(f; xx id)(U; xx Y), i.e. we
need _
[ (U xx ¥) 55 U xx v

i
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to be an epimorphism.

Since Vu € U di:3u; € Ui : u = fi(u;), using Yoneda V Q algebraically closed fields
3 i such that the following diagram commutes:

S

Spec(Q) —Y> U
Consider u’ € U xx Y such that 7o(u’) = u = fi(u;), we have
U xx YEU xx Yxy U= (U xxY) xy U
so for the universal property of the fiber product

Spec(R2) ui

UiXXYHUi

! |

UXXY%U

So ! is continuous.

Soif Y ER X is a morphism of schemes, it induces a morphism of topoi
Sh(yet) — Sh(Xet)

With (£, F)(X') = F(X’ xx V) and f*(F’) = (fP(F’))¥. We have that
(PENY) = lim F(X)
(X', ¢)elyr

Where X'/X is étale and the diagram commutes

!

xXY*>Y

l

So by the universal property, we just get the pairs (X', 1) where

v v x

L

v . x
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If now f is étale, we have (VY’, Id) is the initial object of Iy, hence
fPE(Y') = F(Y)

Hence fPF = Fly, and it’s a sheaf, so f*F = F|y One can show ([Sta], Lemma 18.16.3) that
since f is étale, we have that f* has an exact left adjoint f;, so f* preserves injectives. So we
have a composition

Sh(Xer) —— Sh(Ve) —L—s Ab
Iy

So we have a spectral sequence

RP(C)RY(f*)F = RPT(T'y)F
But f* is exact, so it degenerates in degree 2 and we have

Hp(Xefl F[X) = Hp(yetlxl F)
On the other hand,

(RUfF)(X') = HY(Vet, ¥ xx X', F) = HY((Y xx X')et, F)

Again we have Leray SS
HP(X, RYf,F) = HP*(VY,F)

gives the maps
HP(X,f.F)— HP(Y,F) (B.1)

And again if F = f*G, we have G — f,.f*G, then

HP(X,G) — HP(X,f.f*G) — HP(Y, f*G) (B.2)

B.5 Galois cohomology

B.5.1 G-modules

Definition B.5.1. If G is a topological group, let G — set be the category of continuous
G-sets, i.e. G-sets where
GxX—X

Is continuous if we endow X with the discrete topology.

Proposition B.5.2. If G is a profinite group, then we have an equivalence of categories

Gset —— Sh(Gset/, 1.)

X— Homg( X)

—
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Proof.
1. Homg(_, X) is a sheaf for the canonical topology (i.e. the functor is well defined)

e If X is finite, then by definition the canonical topology is the finest where repre-
sentables are sheaves.

e If X € Gset, then consider the stabilizer
Gr={geG:gx=x}
Gy is the fiber of {x}, open since {x} is open. In particular, #O, = [G : G] is
finite, so
X=]]x
i

for X; finite sets

e Homg(_, [ [ Xi) = | JHomg(_, X;), and the coproduct of sheaves is a sheaf

2. Define a quasi-inverse:
Let H < G open normal subgroup, define E(G/H) the continuous left G-set defined by
the action ox = 0x
H acts trivially on E(G/H), so G; = H g~1, open, so the action is continuous. We have
a right action that gives a map of G-sets (_0), so if F is a sheaf we have an action over
F(E(G/H) given by ox = F(_o)(x). Since if H < H is normal in G we have

F(E(G/H)) — F(E(G/H"))
a functor
Sh(Gset/,1¢) ——— G — set
F —— colimy F(E(G/H))

3. Consider the canonical isomorphism
Y1 : Homg(E(G/H), Z) — ZH

Then we have
cogm Homg(E(G/H), Z) = collL}m zHzz

4. since {E(G/Hy) = XHo 1. is a covering for the canonical topology, we have

F(X"0) — [ | F(E(G/Hy) = [ | FE(G/Ho) x x#, E(G/Ho))

(o, x)
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is exact
[ | F(E(G/Ho)) = Homse(X™, F(E(G/Ho))

and s € Ker( 3 ) iff s is G/Hp-equivariant, so F(X) Z Homg,y, (X", F(E(G/Hy)))
Take now Hy small enough such that X" = X (it is finite), so

F(X) = F(X™) —~— Homg/n,(X"™, F(E(G/Hj)))

lw

Homg(X, F(E(G/Hp)) +—— Homg(X, F(E(G/Ho)™)

Remark B.5.3. The same proof gives an equivalence
Gmod Z Sha(Gset!, TC)

M — Homg(_, M)

So if e is the terminal object in Gset/ (i.e. the singleton) we get
I'e(M) = Homgl(e, M) = M©

So H4(e, M) = R9((_)€) = H4(G, M) the usual group cohomology

B.5.2 Hochschild-Serre spectral sequence
tGL Gisa morphism of profinite groups, we have

(G'set, 1¢) ER (Gset!, 1¢)

where f(X) is X with the action given by gx = f(g)x. It's a morphism of LEX sites, so it
induces
f« : Gmod — Gmod

M+ Homg(G', M)

If f is surjective, i.e. G’ Z G/N, we have
Homg(G', M) = MN
So RPf,M = HP(N, M), so we have the spectral sequence
HP(G/N,HY(N, M)) = HP™9(G, M)
In particular, we have the exact sequence of low degree terms:

0— HY(G/N,MN) = HY(G, M) — (HYN, M))°N — H*(G/N, MN) — H*(G, M)
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B.5.3 The étale site of Spec(k)

Theorem B.5.4. Let k be a field, consider Gy its absolute Galois group. Consider the
functor
v :Spec(k)et — (G — set!, 1¢)

(X = Spec(A)) — Xi = Homy(A, k)

with the action given by the compositionA S k= A5 k 2 k. Then v is an isomorphism
of sites (i.e. a bicontinuous equivalence of categories)

Proof. See [ , Ag2]

B.5.4 Cech, Altale and Galois

Consider for any Altale sheaf F the complex of presheaves C*(F) such that C*(F)(U) =
C*(U, F).

If X is quasi-projective over an affine scheme, we have for | , 1I1.2.17] that H"(U,F ) =
H" (U, F). In particular,

H"(C"(F)(U)) = H"(U,F) = H"(U, F) = 9" (F)(U)
Hence H"(C*(F)) = $("(F)

Proposition B.5.5. Let X be quasi-projective over an affine scheme, F an Altale sheaf on
X. Then

(a) For every f : Y — X there is a canonical map f*C*(F) — C*(f*F) which is a quasi
isomorphism if f is Altale

(b) Let X = Spec(K) and F a sheaf on F corresponding to a Gx-module M. Then C*(X, F)
is the standard resolution of M defined using inhomogeneous chains.

Proof. (a) If V — X is Altale, there is a canonical morphism defined in B.2
[(V,F)— '(Vy, f*F)
In particular, we have a canonical map
I'(U, C"(F)) — '(Uy, C"(f*F)) = T(U, £, C"(f*F))

which by definition commutes with the map induced by the cobords, so we have a
canonical morphism of complexes

C*(F) — f«C*(f*F)
which by adjointness gives a canonical map
f*C*(F) — C*(f*F)
And if f is Altale we have
H"(f*C*(F)) = 9C"(F)y = ¥ (Fy) = H"(C*(f*F))
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(b) If U/X is a finite Galois cover with Galois group G, then C*(U/X, F) is by definition the
standard complex of the G-module F(U) (just checking, see | , [I1 2.6]). By passing
to the limit we have the result.

O]

B.6 The fpqc Site

Definition B.6.1. Consider families of arrows {T; LN T }; such that:

1. T; 1y T is flat for any i and T = J; fi(T;)

2. Y U C T open affine 3 a finite subset ] C I such that 3 V; C T}, j € ] open affine such
that U = U; (V)

This families give rise to a Grothendieck pretopology called the fpqc topology (fidAllemente
plate quasi-compact)

One can show that an Altale covering is in fact an fpqc covering (cfr. [Sta], Lemma
33.8.6).
We have this useful lemma:
Lemma B.6.2. A presheaf F is a sheaf for the fpqc topology if and only if

1. It is a sheaf for the Zariski topology

2. It satisfies the sheaf property for {Spec(B) — Spec(A)} with A — B faithfully flat

Proof. cfr [Sta], Lemma 33.8.13 O

So we can now enounce the main theorem:

Theorem B.6.3. The fpqc topology is subcanonical.

Proof. We can use the previous lemma: We have that hy is a Zariski sheaf for the glueing
lemma: if we have an open cover U; of U and arrows ¢; : U; — X such that

bijuiny; = Pijuny,

We have that 3! ¢ : U — X such that ¢|y, = ¢;. In other words,

Hom(U, X) = Eq(] [(Hom(U;, X)) = [ [Hom(U; n U, X)) = [ [Hom(U; xy Uj, X))
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On the other hand, consider A — B faithfully flat, in particular 5t : Spec(B) — Spec(A) is
surjective. Consider f : Spec(B) — X such that the following diagram commutes:

Spec(B ®a B)
(B) / \
\ ) /

This means that as a map of sets, f factors through Spec(A), i.e. 3 g a map of sets such
that the diagram commutes

Spec Spec(B)

Spec(B) X
x %
Spec(A)
Since f is continuous and st is summersive ([Sta], Lemma 28.24.11), g is continuous.

Take now p € Spec(A) and g(p) € U C X for some open affine U = Spec(R). So p € g~ '(U)
is open, hence we can choose a € A such that p € D(a) € g~'(U) We have now

fr-1(pia)) : Dla) € Spec(B) — Spec(R)
corresponds to a ring map R — B[1/a]. By hypothesis, the following diagram commute:

Spec((B®a B)[1/a]) = Spec((B[1/a] ®a1/q) B[1/a])

/ \

Spec(B[1/a)) Spec(B[1/a])

fa=1(Dla) fa-1(pta)

Spec(R)

By definition, A[1/a] — B[1/a] is faithfully flat and so the following sequence is exact:

1@id—id®1
_—

0 —— A[l/a] —— B[1/a] B[1/a] ®ap/q) B[1/a]

So R — B[1/a] factors uniquely through A[1/a], hence

(B)

D(a) Ya

b y
\5( (A)

fip(a)

D(a) C Spec Spec(R)

a) C Spec
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So we get that V p € Spec(A) 3D(a) and ¥, such that the previous triangle commutes, hence
the 1, glue to a map Spec(A) — X, hence

0 — hx(Spec(A)) s hy(Spec(B) — hy(Spec(B®a B))
is exact, so hy is a sheaf. O

In particular, hy is a sheaf for the Altale topology. Moreover, by the same argument, we
have that the internal hom: let t : U — X be a map in some site (X, 1) less fine then fpqc,
then the presheaf $lom(F, G)(U) = $lom(sr*F, t*G) is a sheaf and we have a bifunctor

Fom(_,_) : She(X)°P x Shr(X) — She(X)

which is left exact in the two variables, so we can derive it and obtain &xt (by the same
means of Ext we can check that it is the same if we derive the first or the second variable)

B.7 Artin-Schreier

By Yoneda lemma, we have that if hy is represented by a commutative group scheme, then
hy is a presheaf of abelian groups.

Definition B.7.1. Let X be a scheme. Then the sheaf
Gq = HomSch(_: Ga) = HomRings(Z[T]'—)

is a sheaf of abelian groups.
We have a natural inclusion of sites € : XZar — X¢¢ which induces a left exact functor
€°Sh(Xzar) — Sh(Xet)
F— (UL X (U, x*F))
Which trivially preserves injectives since st* does. So if F is a quasi coherent Ox-module it

gives a spectral sequence
HY,.(X,R9€°F) = HL, (X, Fe)

where Fgt(U — X) = ['(U, F ®0, Op), it is a sheaf for the faithfully flat descent (see | ,
Ch. 1] and | , 3.2.1))

Theorem B.7.2. If F is a quasicoherent Zariski Ox-module, then R1e°F = 0 for q > 0, so
in particular
Hgt(xl Fét) = Hgar(x’ F)

Proof. | , 4.1.2]
Consider a scheme X of characteristic p, we have the Frobenius morphism

Frob: Gy — Gq
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Theorem B.7.3. The morphism o = Frob — Id : G — G4 is epi with kernel Z/pZ

Proof. Consider U — X étale and s € Ker(p)(U), i.e. s € I'(U,Oy) such that sP = s. By
definition, this are all and only the elements of the image of the characteristic morphism
Z/pZ — T'(U, Op), hence we have a left exact sequence

0— Z/pZ — Gq — Gq

The surjectivity comes from the fact that for every ring A of characteristic p the Artin-
Schreier algebra A < A[T]/(TP — T — a) is free and Altale. In fact, it's enough to show that
YV U — X 3 {U; — U} an Altale covering such that ¥ s € Oy(U)* 3 a; € O, (U;) such that
alp —a; = 5|Ui-
Consider an open affine cover U = J; V; with V; = Spec(A;). Hence we have an Altale
surjective map

A][T]/(Tp -T- S]Vj) — Aj

So take U;j = Spec(A;[T]/(TP - Tsy,), we have that Uj — V; — U is Altale and JU; = J Vj =
X, so we have an Altale covering {U; — U} such that

SUi=Tp—T

So we have an exact sequence (called Artin Schreier exact sequence):
0— ZIpZ — Gq 5 Gq — 0

So if X has dimension d H"(X, G4) = H},,.(X,0x) = 0 for r > 2d, and we have a bounded
exact sequence in cohomology

0— ...H}(X,Z/pZ) — Hy (X, 0x) S Hy (X, 0x) ... > HF(X, Z/pZ) — 0

B.8 Kummer theory
Definition B.8.1. Let X be a scheme. Then the sheaf
Gm := HomSCh(_: Gm) = HomRings(Z[T; T_1]:_)

is a sheaf of abelian groups.

B.8.1 Useful exact sequences
Kummer Exact Sequence
Consider n € Z and the morphism of sheaves given by the n-th power:

(i
Gmx — Gm,x
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It is clear that
Ker(()}) = {x € Ox(X)" :x" =1} = ,

So we have a left-exact sequence

0— nX — Gm,X i’ Gm,X

Proposition B.8.2. If n is invertible in X, then the sequence is exact

Proof. It's enough to show that V U — X 3 {U; — U} an Altale covering such that V s ¢
Oy(U)* 3 a; € Oy, (U;) such that a* = syy,.
Consider an open affine cover U = | J; V; with V; = Spec(A;).By definition, n € A" and by

the properties of morphisms of rings, s|y, € A/, so nsyy, € A].X. Hence we have an Altale
surjective map
A][T]/(Tn - S[Vj) — Aj

So take U; = Spec(A;[T]/(T" —s|y,), we have that U; - V; < Uis Altaleand JU; = JV; = X,
so we have an Altale covering {U; — U} such that

Sy; = ™

Exact sequence for the Zariski topology

Let X be any scheme, recall that a Prime Weil divisor is a closed irreducible subscheme of
codimension 1.

Definition B.8.3. The sheaf of Weil divisors on Xz, is

DiVX(U) — ZZ prime Weil divisor = DiVx _ @ iZ*Z
codim(Z)=1

Proposition B.8.4. If X is regular connected, then we have an exact sequence of Zariski
sheaves:
0— 05 — K* — Divy —» 0

Proof. If U C X affine, U = Spec(A), we have the exact sequence
0— A* — K* — Div(A) = z&htel=!
So we have a left exact sequence
0— 05 — K — Divy

And on the stalk,
0— O)X{,x — K™ — Div(Ox )

And since X is regular, Oy, is a regular local ring = UFD, so every prime of height 1 is
principal for Krull Hauptidealsatz, hence the sequence is exact O

Remark B.85. If n is the generic point and g : n — X is the inclusion, then K* = g,(K*)
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Exact sequence for the Altale topology

Theorem B.8.6. If X is regular connected, then we have an exact sequence of Altale
sheaves:
0— Gm,x — 9+Gm,x — Divx — 0

Proof. g is dominant so G, x — g«Gm K is injective. Consider U — X an Altale connected
scheme, so U is regular, hence on U,y we have

0— Gmu— K(U)* — Divy — 0

exact, so we get the exactness on the Altale site.

B.8.2 Cohomology of G,,

Recall the isomorphism:

Sh qp(Spec(k)et) = GrMod

F— & 1lim F(y YEGg/H)) = lim F(Spec(k'))

— H<Gg open — k'/k finite

Lemma B.8.7. Consider X = X1 []...]| Xn, consider the Zariski cover {X; — X} we have
that V F sheaf
HYX,F) = [ |[HUX;,F)Vp >0

Proof. Since if i # j we have X; xx X; = f and X; xx X; = X;, the Cech cobordism is just

n

dn(alig...in = Sig...in Z(—i)ka

k=0

hence it is either the zero map if n is odd and the identity if n is even, hence the Cech
complex is exact for any presheaf. So in particular

HP({X;},HYF) = 0V p > 1
H°({Xi}, HF) = [ |HIF(X:) = | [HUX0, F)
We have the degenerating spectral sequence
HP({X;}, HIF) = HP*(X, F)
So HO(X;, HIF) = H4(X, F), hence the thesis. O

Lemma B.8.8. Let X be a scheme, x € X. Consider j: Spec(k(x)) — X. Then R'j,(Gp ) =
0
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Proof. R',(G, ») is the sheaf associated to
X'/X Altale — HY(X' xx Spec(k(x)), Gm )
Since X'/X is Altale, then X’ xx Spec(k(x)) is the spectrum of an Altale k(x)-algebra, hence
X' xx Spec(k(x)) = xj ]_[ ]_[Jcl’Q

with x; = Spec(Kj) and K;j/k(x) finite separable. So

fl
b

HY (X' xx Spec(k(x)), Gm x) = l—lHi(I,{me,x) = HHi(GKj'RjX) =0
j=1 j=1

The last equality is Hilbert 90. So R'j,(G,, ) is the sheaf associated to 0 = R'j.(Gp ) =0 O
Remark B.8.9. Considering Leray Spectral Sequence for j:
HP (—X; qu*Gm,x) = Hp+Q(x’ Gm,x)

Taking the exact sequence of low-degree terms:
HO(X, RY},Gmx) — HQ(er*Gm,x) B— HQ(erm,x)

So using the previous lemma, we have a mono H%(X, j,Gm.x) — H?(x, G )

Proposition B.8.10. Consider Z, the skyscraper sheaf Z with support {x} conisder
j:x — X, then
Hi(X'j*Zx) =0

Proof. We have again Leray Spectral Sequence
HP(X, RYjZy) = HP™(x, Zy)
which gives the exact sequence of low-degree terms
0 —— HYZ,jiZy) — H'(x,Zy)
And H'(x,Z,) Hi(Gk(x), 7), the action on Z is trivial, so

HY(Gy(r), Z) = Homeont(Gr(x), Z)

But Gy, is compact, Z is discrete and has no finite nonzero subgroups = Homcont(Gg(x), Z) =
0 O

Recall the definition of the sheaf of Weil divisor:
reX!

With X' the subset of points of codimension 1, and the Picard group: if X is normal
connected, then
K* — Divyx(X) — Pic(X) — 0
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Theorem B.8.11. If X is regular connected, then:
i HY(X,Gmx) = Pic(X)
it H*(X,Gpmx) — HZ(GK(X)IK(X)X)

Proof. Consider n the generic point and g : K(X) — X its inclusion. We have the exact
sequence of Altale sheaves:

0— Gm,X — g*Gm,n — DiVx — 0

We have the long exact sequence in cohomology:

0 —— HYUX,Gpyx) — HO(X,g*Gm,n) —— HO(X, Divy)

L HY(X,Gmyx) —— HY(X,0.Gm,) —— H'(X, Divy)

[% H%*(X,Gm,x) — H*(X, g«Gm,y)

And since:
o HX,giCm,n) = GmalK(X)) = K(X)*
o HY(X, Divy) = @, oyt H(X,i:Zy) = 0
o H'(X,gGmy) = 0

We have:

i K(X)* —— Divg(X) —— HYX,Gmyx) — 0

ii 0 —— H%X,Gmx) —— H%(X,9«Gmy) and from the previous lemma H?(X, g.Gpm ) —

X

HQ(TL Gm,n) = HZ(GK(X)rK(X) )
O

Remark B.8.12. If HQ(GK(X),K(X)X) = 0, then V n invertible we have that Kummer exact
sequence induces in cohomology

0 —— mp(Ox(X)) ——— Ox(X)* —"—— Ox(X)* U

L HY(X, ,) ——— Pic(X) —2—— Pic(X) j

L H*(X, n) —— H?*(X,Gpx) =0



B.9. COHOMOLOGY OF y 117

B.9 Cohomology of ,

Definition B.9.1. A field K is said to be C1 if for all n and all nonconstant homogeneous
polynomials f(Ty ... T,) with degree d < n there is (x1...x,) € K™\0 such that f(xy ...x,) =
0

Proposition B.9.2. If K is C1, then Br(K) =0

Proof. Let D be a K-division algebra of degree r?, consider N : D — K the reduced norm.

Since N(x)N(x~!) =1 for all x € D\ {0}, then N has no nonrtivial zeros, but if e1 ... e, is a
K-basis of D then N is a homogeneous polynomial in K[T}...T,] of degree r, so r < r> =
r=1. O

Theorem B.9.3 (Tsen). If k is an algebraically closed field and K is an extension of
transcendence degree 1, then K is C1.

Proof. [Del, Arcata, 3.2.3]

Theorem B.9.4. Let k be an algebraically closed field and X/k be a proper smooth curve
with genus g. Then we have that

Iln(k) ifr=0
(Z/nZ)% ifr =1
ZInZ ifr =2
0 otherwise

H"(X, n) =

Proof. Applying remark B.8.12 we have an exact sequence
0— HY(X, n)— Pic(X) Pic(X)— H*(X, n)— 0
We can use the exact sequence
0 — Pic’(X) — Pic(X) X% 7z -0

And since Pic%(X) can be identified with the group of k-rational points of the Jacobian,
which is an abelian variety of dimension g, we have that Pic?(X) - Pic%(X) is surjective
and its kernel is (Z/nZ)?9, hence we have

0 —— (Z/nZ)*9 —— HYX, ) —— 0

deg

0 —— Pic%(X) —— Pic(X) Z 0
n n n
0 — Pic%(X) — Pic(X) —*7 , 7 0

0 — H*X, n) — Z/InZ —— 0
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B.10 Sheaves of modules

Definition B.10.1. Let A be a (non necessarily commutative) ring and G a site. We can
consider the abelian subcategory Sh(G, A) of Sh(G) given by the sheaves of A-modules. We
can consider the tensor product of F,G € Sh(B, A) as the sheafification of

(F"®"” G)(X)— FX®p GX
So we have a bufunctor

®a _:Sh(B,\) x Sh(B,\) - A — mod

On the other hand, we can consider the sheaf
Flom(F, G)(U) = Homgpx,a)(Fu, Gu)
This is already a sheaf since Homgyx a) is bi-left exact. It comes straightforward that
_®p G4 Hom(G,_ )

Since Homgp (F®AG, H) = Hompgp (F’®7"G, H) = Hompgp(F, $lom(G, H)) = Homgp (F, $lom(G, H,
So _®a F is right exact and $lom(F ) is left exact. We can derive them and obtain Tor'(_, G)

and 8xti(G,_)

We say that a sheaf of A-modules F is flat if _ ®p F is exact

Proposition B.10.2. Sh(X, A) has enough flat objects.

Proof. If X is the terminal object, consider a covering {U; LR X} € Cov(X). Consider the
sheaf
N if Ve Cov(U;)

0 otherwise

P (A)V) = {

Then by definition ¢;(A) is flat. Consider now F € Sh(X, A) and take the free resolutions
oy (Ui) - F(U)
so we have a flat quotient

@i(pu(A)t - F

Remark B.10.3. Suppose that F is locally constant Z-constructible (it is enough finitely pre-
sented), then if x is a point for the topology considered (when this makes sense) we have

Fom(F, G)z = Flom(Fy, Gx)

Then the flat reslution is also locally free, so if @i(cj)i;(i\))li is as before, consider x , then
for all F

R¥Com(@;(¢u(A))", F)z: = RHomp (N, Fz) = Homa (A, Fy)
In particular, if M, N and P € D?(X, A) and P is locally constant Z-constructible, the adjunc-

tion gives a quasi isomorphism
RHom(M, R¥Com(N, P)) = RHom(M &"“ N, P)

This is in general not true, we usually take M (resp. N) to be _ ® N-acyclic (resp. M ® _-
acyclic)
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Remark B.10.4. If f~' : ¥ — X is a continuous morphism of sites, F, G € Sh(X, A), then
f«(F ®p G) € Sh(Y, A) is the sheafification of

(Vs Flf V) @p GUF V)" = hiF @ £.G

B.11 Henselian fields
Let R be a strictly henselian DVR with fraction field K and residue field k. Let K be a
separable closure of K and let I = Gg.

Proposition B.11.1. For any torsion I-module with torsion prime to p = char(k), there
are canonical isomorphisms

M! ifg=0
HYI,M) = 4 M;(-1) ifg=1
0 otherwise

Where for any forsion abelian group we set

A(—-1) := Hom( lim p,(k), A)
(n,p)=1
Proof. Consider P C I be the wild ramification subgroup, it is a profinite p-group. Then
()P is exact in the category of torsion modules with torsion prime to p, since every torsion
P-module is a filtered colimit of finite P-modules with order prime to p, and every open
normal subgroup of P has index a power of p, so
HY(P, M) = lim lim HY(P/U,MY) = 0
UcCP M;
Consider the morphism

1
¥ ‘M — MP
7 [P Stabp(x)] gr:ih =
geP/Stabp(x)

It induces a morphism Mp — MP 3. We can see that the map induced by the quotient
MP — Mp is the inverse*
So Hochschield-Serre degenerates in degree 2 and

HY(I/P, MP) Z H¥(I/P, Mp) = HY(I, M)

But since I/P is the Galois group of the maximal tamely ramified extension, it is isomorphic
to

[1Ze= lim po(k)
{£p (n,p)=1

and the result comes from | , 4.3.9] O

%f x = g¢'m — m, then if g’ ¢ Stabp(x), Y. gg'm — Y. gm = 0, if g’ € Stabp(x), then m = g’'(x — m) = g”’m.
Ifp2 m=gmso).ggm—-YY,gm=0.If p=2 thenx =g'(m —g'm) = —-g'x = —x and since 2 does not
divide the torsion x = 0

“Since if x € M? Y gepistabpir) 9% = [P : Stabp(x)]x, and since MP? — Mp is injective it is an isomorphism
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B.12 The FEtale site of a DVR

The reference for this section is | .
Let us fix some notation:

e O will be be a Discrete Valuation Ring (from now on, DVR) with uniformizer 6, quotient
field K and residue field k, always assumed to be perfect.

e K a fixed algebraic closure of K and v the extension of the valuation to K, Ky C K the
maximal unramified extension of K with respect to v, and its residue fieldE will be
the algebraic closure of k, (), the completion with respect to v (recall that Ky = Ky)

e G, = Gal(K,/Ky) the decomposition subgroup, I, = Gal(K,/Ky,) the inertia subgroup.
Recall that if O is henselian, then G, = Gg.

o Gk = Gal(K/K), G, = Gal(k/k), Sk = Gx-mod (equiv. Shap(Spec(K)et)) and Sp = Gp-
mod (equiv. Shap(Spec(k)et)).

o a:Gp = Gy/I,
o T = a*m,: Sk — Sg, i.e. TM = M with Gg-action induced by «a. It is left exact.

e So be the mapping cylinder of T.

Recall (] ]) that if ¥ %, X is a closed immersion and U = X \Y J, X is the open
immersion of the complementary, then let G be the mapping cylinder of T = i*j,, we have
an equivalence of categories

sk )
She((X) 5> 8  Fis (j*F,i*F,i*F - i*j,j*F = 1j*F)

where €/ is the counit of the adjunction j* 4 j,. Hence, we have
Spec(k) LR Spec(0), Spec(O)\ Spec(k) = Spec(@[%]) = Spec(K)

Hence if O is henselian (i.e. G, = Gg), Sp is equivalent to the Altale site of Spec(0) via the
maps given above and the equivalences, in particular:

a. j*F = Fj since j is an open immersion (hence Altale), so in the equivalence relative to
Spec(K) we get
j*F « lim F(L)
L/K—ﬁ;lite

b. If now u — Spec(k) is Altale, then u = | [ Spec(#;) with ¢;/k finite separable, hence i*F is
the sheaf associated to
U+— lim F(U)

—
U/Spec(0O) etale
with lift U—Spec(k)
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But we have a terminal object: it's U = [ [(Spec(Oy,)) with O, is the integral closure of O
in the unramified extension L;/K induced by ¥¢;, so in the equivalence relative to Spec(k)
we get
i*F < lim F(Oy)
L/K—ﬁ;lite

unramified

So via this equivalence we have

Gmo =( lim U(Oy), lim L* lim i) = (UyKz” C”)

—
L/K finite L/K finite L/K finite
unramified unramified

with i;, the inclusion O C L*, Up the group of units of the integral closure of O in Kj seen
as a Gp-module, and G,k as usual K with Gk action. Then we have an exact sequence

k%

0= Gmo = (K", Up,” C") = jsGmk = (K, (K')" = K§,id) — i.Z = (0,2,0) - 0
Which follows directly from the discrete valuation
0-Uy— Kt 57 —0
Remark B.12.1. If O is henselian and k is finite, then
RY(Gmx) = (0, R1t(Gmp), 0) = (0, H(I,, K'),0) = 0
The last equality follows from local class field theory (see [ , X,7, prop 12])

Lemma B.12.2. Let O be a strictly henselian DVR and X = Spec(0), i : s — S its closed
point, j : n — S its generic point, I, = Gal(f/n). Then for any sheaf of Z/nZ-modules on
n we have

(Fp)! ifq=0
(RU.F)s = { (Fy)i(-1) ifq=1
0 otherwise

Proof. Since O is strictly Henselian, the only Altale neighourhood of s is X itself, hence
(RjsF)s = RU'(S, Rj.F) = RT'(n, F)
So (RYj,F)s = HY(I, Fp) and the result comes from proposition B.11.1. O

Lemma B.12.3. Let X be a noetherian scheme of pure dimension 1, i : x — X a closed
point, M a constant sheaf of Z/nZ-modules on X, we have canonically:

M(-1) ifq=2

RYi'‘M =
0 otherwise
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Proof. Consider Xy the strict localization of X in x. Consider the open immersion
jrX\{x}—X

and its base change )
]'ZXj XXX\{X}—)X;E

By hypothesis, Xy is a strictly local trait and Xz xx X \ {x} is its generic point, so by
lemma B.12.2 we have

M ifq=0
(R%uj*M)z = (R1j* M)z = { M(—1) if ¢ =1
0 otherwise
So the canonical morphism

is an isomorphism: this is trivial on X \ x and on x it follows from the formula for q = 0.
Consider the triangle in D (X, Z/nZ)

ivRi'M — M — Rj,j*M —
which gives in cohomology
0— i,i'M > M — jj*M — i,R''M — 0

Soi'M = 0and R'i'M = 0 since the middle arrow is an iso and i, is fully faithful. Continuing
in cohomology we have for q > 2 isomorphisms

R, i*M Z i,RYi'M
So the result follows. O
Remark B.12.4. Using the language of derived categories, this translates as
Ri'M = M(-1)[2]

Lemma B.12.5. If X is a trait and F is a sheaf on the open pointj: n — X, M the
corresponding G,-module, then H"(X,jiF) =0

Proof. Consider the exact sequence
0 — jF — Rj,F — i,i*Rj,F — 0

Recall that i*j,F = (M), Since RT'(X, Rj.F) = RI'(n, F) = RT'(Gy, M) and RT'(X, i,i*Rj.F) =
RI'(x,i*Rj,F) = RT'(Gy, M"), and since M% = (M!)%, we have the long exact sequence

H"(X,jF)— H"(Gy, M) = H([(Gy, I'(I, M))) —

Hence H"(X,jiF) =0 O
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Derived categories

C.1 Triangulated categories

Definition C.1.1. A triangulated category is an additive category G together with a trans-
lation functor, i.e. an automorphism T : 6 — G, and distinguished triangles, i.e. sextuples
(X,Y,Z,u,v,w) such that X, Y and Z are objects of Band u : X - VY, v: V¥V — Z and
w : Z — TX are morphisms. Abusing notation, a triangle will be usually written

VA
y N
X —% vy

A morphism of triangles is a triple (f,g,h) forming a commutative diagram

vV YV Z "> TX

X u
lf lg lh le
X, u’ 4

’

v Y7 S TX

This data must satisfy the axioms:

TR1 e Triangles are closed under isomorphisms,
e Forevery u : X — X there exists Z, vand w such that (X, Y, Z, u, v, w) is a triangle,
e (X,X,0,id,0,0) is a triangle

TR2 (X,Y.Z,uv,w) is a triangle if and only if (Y, Z, TX, v, w, —Tu) is a triangle

TR3 Given two triangles (X, Y, Z,u,v,w) and (X', V', Z’,u’, v/, w’), and morphisms f : X —
X', g: Y — Y commuting with u and u’, then there exists an arrow h : Z — Z’ such
that (f, g, h) is a morphism of triangles.

TR4 (The octohedral axiom) Suppose we have the triangles

e (X,Y,Z',u,j,),

123
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[ ] (YI ZI X,I vV, i)l
e (X,Z,Y,vu,-,-)

Then there exist arrows f : Z' — V' and g : ¥ — X’ such that

X/
(W \
g
7z f y

is a triangles and
Zl Yl Y/ g X/
Z
are commutative

The same definition with reverse arrows leads to a cofriangulated category. If G is trian-
gulated, then G°P is cotriangulated

Definition C.1.2. e A functor F : G — B’ between two triangulated categories is called a
covariant O-functor if it commutes with the translation functor and preserves triangles

e A functor H : 6 — A from a triangulated category to an abelian category is called a
covariant cohomological functor if for any triangles (X, Y, Z, u, v, w) the long exact
sequence

CHTX) IS HTY) IS HiTiZ) B frittx) T8 HeTiY)

is exact
We will write H!(X) for H(T'X). The same definition applies to contravariant homological
functors by reversing the arrows and consider cotriangulated categories.

Proposition C.1.3. a) The composition of any two morphisms in a triangle is zero
b) If G is triangulated and M is an object, then Homg(_, M) and Homg(M, _) are 8 functors.

c) In the situation of TR3, if f and g are isomorphisms then also h is

Proof. a) Let (X,VY,Z,u,v,w) be a triangle. By TR2, (Y, Z, TX,v,w, —Tu) is a triangle, so it
is enough to show that uv = 0. By TR1, (Z,Z,0,id,0,0) is a triangle, we have w : Y — Z
and id : Z — Z satisfying the hypothesis of TR3, so there is h : TX — 0 such that
T(v)(—T(u)) = 0, and since T is an automorphism, it is conservative, hence uv = 0

b) Let (X,VY,Z,u,v,w) be a triangle. By TR2, it is enough to show that

Hom¢(M, X) — Hom¢ (M, Y) — Home(M, Z)
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is exact. By a), the composition is zero. So take g € Homg(M, ¥) such that vg = 0. Then
the triangles (M, 0, TM, 0,0, id) and (Y, Z, TX, v, w, —Tu), and the arrows g : M — Y and
0:0 — Z satisfy TR3, hence we have an arrow f' : TX — TM such that —Tuf = Tg,
and since T is an automorphism we have that f' = —Tf, so we have f st uf = g.

With the same proof we have Homg(_, M) is a contravariant cohomological functor.

c¢) Consider the situation in TR3 and apply Homg(Z’, _), we have a commutative diagram
with exact rows

Hom(Z, X) — Hom(Z, v) — Hom(Z’, Z) —*" Hom(Z', TX) —*"s Hom(Z', TV)

10 Jo0 |10 |10 |90

Hom(Z, X) %5 Hom(Z, V') —“%% Hom(Z', Z') s Hom(Z/, TX') s Hom(Z', TY)

where f(), g(), Tf() and Tg() are isomorphisms, hence h() is an isomorphism. Take
¢ = (h()"Yidz) € Hom(Z', Z), we have h¢ = idz. Using now Hom(_,Z) we have
Y € Hom(Z, Z') such that ¥h = idz, hence ¢ = 1 = h~1.

C.1.1 The homotopy category

Let A be an abelian category, K(A) the homotopy category. Let f : X — VY, then we define

the mapping cone Cone(f) = X[1] @ VY with differentials given by (df)[i] f(ﬁ] ) It well-posed

since if f ~ f/, ie. f —f = spd™ + sp1d™*!, then Cone(f) = Conel(f’) as complexes with
isomorphism given by (19 Igy ), which has inverse (' Igy)
In particular, Cone(idy) is null homotopic: consider the maps (id())m 0) ¢ (X[1)n @ Xn —
(X[1])n-1 © Xn_1, they give the homotopy:
—d™+ id 0 0 0 0 —d% idx, id - 0 0 0 _qid e 0

(7 e )iy, 0) + Ciax,, 0) (0™ " )= (g™ o)+ (cay iy, )= (776" ay, )
Theorem C.1.4. K(A) has a structure of triangulated category with translation functor
the shifting operator, i.e. T(X) = X[1] and T"(X) = X[n], and triangles given by sextuples
homotopically equivalent to mapping cones, i.e. (X,Y,Z,u,v,w) is a triangle if and only
if we have quasi isomorphisms with

Proof. We have to check the axioms: The first axiom comes by definition and the previous
remark shows that (X, X, 0,idy,0,0) is a triangle.
The other axioms come from technical details (see [?, Tag 014P]). O

Corollary C.1.5. Using the same idea, one can show that K*(A), K~ (A) and K°(A) are
full trinagulated subcategories of K(A)

Proof. [?, Tag 014P]

Remark C.1.6. Let H : K(A) — A the functor that sends a complex K into H(K) and let
H! be HT'. It is a cohomological functor.
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Proof. Let u: X — Y be a morphism of complexes. We have an exact sequence
0— Y — Cone(u)— X[1]— 0
so by the snake lemmma we have a long exact sequence in cohomology
Hi(V) — Hi(Cone(u)) — HI*1(X) S Hit1(y)

we need to show that 6 = u, but by the construction with the snake lemma, 6 is given by
the diagram:

z"(Y)

oo

0 — Y* ———— Cone(u)® — Xt 40

J ! |

So since § = H"(&') where &' given by

& = O F 4 (L) =u"

hence if (X,Y,Z,u, v,w) is a triangle we have the long exact sequence

H"(u)

--H(Y) — H!(Cone(u)) — H*'(X). ..

C.2 Localization

Definition C.2.1. Let G be a category. Then a collection S of arrows is said to be a multi-
plicative syuem if it satisfies the following axioms:

FR1 S is closed under composition and idy € S for all X

FR2 If s,s" € S, u, u’ any arrows that form the diagrams ls lsr then
u

we have t,t' € S and v, v’ any arrows such that we have commutative squares
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FR3 If f,g : X — Y are any parallel arrows in G, then the following conditions are equivalent:

(i) There exists s € S such that sf = sg
(ii) There exists t € S such that ft = gt

Definition C.2.2. If G is a category and S is a collection of arrows, then the localization of
G with respect to S is given by a category Bs and a functor Q : 8 — Bs such that

a) For all s € S, Q(s) is an isomorphism

b) For every functor F : G — @ such that for all s € S, F(s) is an isomorphism, then there
is a unique functor F’: s — 9 such that F = F'Q

If the localization exists, it is unique up to isomorphisms of categories (standard argument).

Proposition C.2.3. Let S be a multiplicative system, then the localization Gs exists and
is given by:

Ob(Bs) = Ob((C))

Homgy (X, Y) =lim ) Homg (X', Y)
— I)(;

where Ix is the category whose objects are {(X',s),s € S,s : X' —» X} and
arrows are commutative diagrams

X1—>X2

N

Furthermore, if G is additive, so it Gg.

Proof. We have that
(i) Ix + @ since (X, idx) € Ix

(ii) (X4,s1), (X9, s2), consider (W, t, to) as in FR2, we have u = s1t; = soty € S, so (W, u) €
Ix and by FR2 we have that t;, ty induces morphisms

(Xll 51)

%

(W, u)

I

(XQ, 32)
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so IP is filtered. So f € Homg, (X, V) is represented by a diagram

X/ X‘Y

with s € S, and two diagrams (X', s,a) and (X”,t,b) define the same morphism if there
exius u: X — X in S and a diagram

X
N

X u X"

| [

X 1%

To compose morphisms

X’ |4

X 1% 1% Z
one uses FR2 to find a commutative diagram
X//
/ \‘
X' |4
/ \ / R
X Y Z

By the same argument as before, we can see that the composition does not depend on X,
¥ and X", so BGs is well defined, and by construction

Q:6— Gs

X
such that if X L Y, then Q(f) is given by the diagram iV X If now s € S,
X Y

Y
then Q(s) is an isomorphism with inverse / \dj
X 1%

If F: 6 — 9 such that F(s) is an isomorphism, we can define F’ as

F'(f) = lim F(s) ™' Fla)

Ix
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F’ is unique by definition and F = F’'Q by definition.
Moreover, if G is additive, since Iy" is filtered then

lim Homg (X', V)

Ix
is an abelian group (filtered colimits exists in Ab) and the composition distributes. O

Definition C.2.4. Let G be a triangulated category and S a multiplicative system. S is said
to be compatible with the triangulation if

FR4 se Sifand only if Ts € S
FR5 Asin TR3,if f,g e Sthen h e S

Proposition C.2.5. If G be a triangulated category and S a multiplicative system com-
patible with the triangulation, then Cs has a unique structure of triangulated category
such that Q is a O-functor universal for all §-functors, i.e. such thatif F: 6 — 9 is a
O-functor between triangulated categories such that for all s € S F(s) is an isomorphism,
then there exists a unique o-functor F' : 65 — 9 such that F = F'Q.

Proof. Easy but technical, see [Sta, Tag 05R6]

Proposition C.2.6. Let G be a category and 9 a full subcategory, let S be a multiplicative
system in G such that Y N S is a multiplicative system in 9. Assume that one of the
following condition is frue:

(i) For every morphism s : X' — X with s € S and X € 9, there is a morphism
f: X" — X' such that X" € 9 and sf € S

(ii) For every morphism s : X — X with s € S and X € 9, there is a morphism
f: X — X" such that X" € 9 and fs € S (the dual statement)

Then the natural functor Dsnp — Bs is fully faithful
Proof. Straightforward by definition of Homg (X, V)

Proposition C.2.7. Let G be a category, S be a multiplicative system and Q : 6 — Bg the
localization. Let 9 be a category and F, G : 6s — 9 two functors. Then the natural map

a : Nat(F, G) — Nat(FQ, GQ)
is an isomorphism

Proof. Since Ob(B) = Ob(Bg), « is injective. Since every morphism in Gg is represented

by a diagram
N

X 1%
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and since F's and Gs are isomorphisms, we have that if n: FQ — GQ, then n) is given by
the composition:

FX'
R
FX nx FY
Gsnx(Fs)™! GX' ny

o N
GX GY

C.3 The definition of Derived Category

Proposition C.3.1. Let G be a triangulated category, A an abelian categoryand H : 6 — A
a cohomological functor. Consider

S:= {s € Arr(B) such that H(T's) is an isomorphism for all i € Z}
Then S is a multiplicative system compatible with the triangulation.
Proof. FR1 Trivial by definition

FR2 Let s € S and a diagram
Z

ls
X 215V
Using TR1, complete s to a triangle (Z, Y, N, s, f, g). Complete fu to a triangle (W, X, N, t, fu, h,
Then we have a commutative square

x U N
u lid}v
v N

so by TR3 there is a map v: W — Z giving a morphism of triangles

w_tax Nt
lv lu lidN lTV
z—2 v L N9 .77

Then sv = ut, so it remains to prove that t € S.
Since s € S, we have the long exact sequence

HT'Z = HT'Y — HT'N — HT*'z = HT!*ly
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hence HTN = 0 for all i € Z. Hence the long exact sequence

HTit

HT'N =0— HT'W ==L HT'X — HT'N =0

shows that HT't is an isomorphism for all i, hence t € S. The dual statement is
analogous.

Let f : X — Y be a morphism. Since 3 is additive, it is enough to show the equivalence
of

(") There exists s: Y — Y/, s € S such that sf =0
(ii") There exists t: X' — X, t € S such that ft =

Suppose (i’) holds, so complete s into a triangle (Z, Y, Y’, v, s, u). Since sf = 0 and

Hom(X, Z) % Hom(X, ¥) 2% Hom(X, V')

is exact, there exists g : X — Z such that vg = f, so we can again complete g to a
triangle (X', X, Z, t, g, w). since now

Hom(X, V) %% Hom(X, Z) X% Hom(X', Z)

is exact and f = vg, we have ft = 0. By the same method as FR2, since s € S we have
the long exact sequence

HTlY -:) HTl Y, — HTi+1Z — HTi+1y _:) HTi+1yl
So HT'Z = 0, hence the long exact sequence
HT 'z = 0— HT'X P74 HTiX - HT'Z = 0

shows that HT't is an isomorphism for all i, hence t € S. The other implication is
analogous.

Trivial by definition since T is an automorphism of G

We have a morphism of long exact sequence

HT'X —— HT'Y —— HT'Z —— HT'*1X —— HT*Y

lHTI lHTig lHTih lHTHif lHTiJrig

HT'X' —— HT'Y —— HTZ' —— HT*'X' —— HTH'Y

Since by hypothesis HT'f and HT!g are isomorphisms, by five lemma HT'h is an
isomorphism, so h € S.
OJ

Corollary C.3.2. Let A be abelian, K(A) the homotopy category, then if Qis is the class
of the quasi isomorphisms, is a multiplicative system compatible with the triangulation
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Definition C.3.3. Let A be abelian. The derived category D(A) of A is defined as K(A)qis.
Similarly, we define D*(A), D~(A) and D?(A), and they are all full subcategories via propo-
sition C.2.6

Remark C.3.4. The functor "complex in degree 0" A — D(A) is fully faithful and its essential
image consists of the complexes such that H (X) = 0 for i # 0.

Proof. Let f : A— Bin A. Then f = 0 in D(A) if and only if there is a quasi isomorphism
s: B— X such that sf is null homotopic. Since B is in degree zero, s' = 0 for all i # 0 and
by the commutativity of the squares, s° : B — Ker(dg)(), and since H°(B) = B, s” induces an
isomorphism

s:B 5 HYX)

so its inverse induces a map
t:Ker(d%) — B

such that 1‘d;<1 =0 and ts° = idg. So if s°f = d~'h, we have that
f=ts"f =tdh=0

So the functor is faithful.
Take now f € Homp4)(A, B), it is represented by:

0 A 0
x-1 d™! X0 d° Xt
0 B 0

Since sd~! = 0 and ad~! = 0, we have that s and a factorize through X°/Im(d1), so we
have a quasi isomorphism t which is the identity in degree # 0 and the passage to the
quotient in degree zero. Hence f is also represented by

0 A 0

N e AN
o

0 XYIm@dl) — L Xt
0
So taking t the inverse of s in cohomology, we have that if t : Ker(d®)/Im(d~!) — X°/Im(d~1)
is the inclusion, sitt = id So f is the image of a map A — B via the composition with tf. So
the functor is full.
Then we conclude by construction.

0
B




C.3. THE DEFINITION OF DERIVED CATEGORY 133

C.3.1 Enough injectives

We will see now another description of D(A) if A has enough injectives. We first need
three technical lemmas: Let fix an abelian category A

Lemma C.3.5. Let f : Z — I be a morphism of complexes of an abelian category such
that Z is acyclic, I" is injective for all n and I is bounded below. Then f is null-homotopic.

Proof. We will construct an homotopy by induction. For n << 0, I = 0. Then let h™ be
zero (since f" is zero). So supposed that for all n < p we have constructed h, such that
f* = h*d% + d?'h"~1. Then consider gP := f, — d?ﬁlhp‘iz we have

gPdy~t = dPp=t —dP (Pt — dPhP2) = 0

Hence g factorizes through ZpIm(dlz’Hi) = ZP/Ker(dP) since Z is acyclic. But since IP is
injective and ZP/Ker(dP) — ZP*! is mono, we have an extension hP := ZP*! — P such that
hPdb = g, hence fP = hPd’ + dP~'hp-1

Lemma C.3.6. Let s : I* — Y* a quasi isomorphism of complexes where IP is injective
and [°* is bounded below. Then s is an homotopical equivalence

Proof. Consider the mapping cone Z* = TI* & Y*, then Z°® is acyclic by the long exact
sequence in cohomology. Hence the map v : Z* — TI*® is null-homotopic by lemma C.3.5.
So consider the homotopy

(k, t): TI*p Y* > I°

Then we have that:

id; = kd ts + dik,
v = (id},0) = (k, )dyz + dj(k, f) = | 1 = Fez T isTd

0 =tdz +djt
The second one gives that f is a morphism of complexes, the first one that ts ~ idj.
Lemma C.3.7. 1) Let P be a subset of Ob(A) and assume

(i) Every object of A admits an injection into an element of P

Then every complex X* of K(A) admits a quasi isomorphism into a bounded below
complex I* of objects of P such that every map XP — IP is mono.

2) Assume furthermore that P satisfies

(ii)) If 0 > X — Y — X — 0 is a short exact sequence such that X € P, then Y € P
if and only if Z ¢ P

(iiii) There exists a positive integer n such that if
X0 5. X" 0

is exact and X°---X"1 € D, then X" € P
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Then every complex X € K(A) admits a quasi isomorphism into a complex I*® of objects
of P

Proof. 1) We may assume XP = 0 for p < 0. Then consider an embedding X° — I° with

I° € P. Then we can suppose that we have I°...IP~!, Consider the pushout

xp-1 s XP

! )

IP/im(IP~Y) —— Q

Consider an embedding Q — IP and define the maps as in the pushout. By construction,
I* is a complex and X*®* — I*® is a quasi isomorphism and every map X? — I is mono

Let ip be an integer, and consider the truncated complex
0 — Ker(d®) — X — ...

Then by 1) we have a quasi isomorphism into a complex I* with elements in P with each
XP — IP mono. So consider the complex X§ as

.. ,Xi0—2 N Xio—l _ Iio N Iio+1 ...

Then we have a quasi-isomorphism X*® — X3 such that every map XP — Xg is mono.
Suppose now that i1 € Z and that we have X{ a complex where XP ¢ P for p > iy. Take
ig < i1. We can find by the previous step a quasi isomorphism X7 — X'® such that X'’P € P
for p > iy and such that every map X} — XP is mono. Then take Y? = coker (X} — XP),
VP is an acyclic complex and by property (ii) for p > io YP € P, and for property (iii), for
p > i1 + n we have BP(Y*) € P (just take the exact sequence YP™" — ... —» VP — BP — ()
Then we have an exact sequence

0— X} -Q—B(Y)—=0
where Q is the pushout of the diagram

Xit—— X}

L]
B(X') — Q
So we can define '
X" ifp<it+n
X0=2Q ifp=ii+n
X§ ifp>i1+n
Then by construction X; — Xy is a quasi isomorphism and XS € P for p > ip and

X5 =X{ forp > iy +n.
So now if ig > iy > --- is a strictly decreasing sequence of integers, choose Xy as
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in the first step and X4, Xo--- for iy,io--- as in the second step. Then we have quasi
isomorphisms

X—=Xo— X1 —Xg---
and for each p we have that
XP—XP— X — X

is eventually constant and eventually in P, hence lim X,. is the required complex.
O

Proposition C.3.8. Let A be an abelian category and let I be the additive subcategory
of injective objects. Then the natural functor

at : K*'(9)— DT (A)
is fully faithful. If A has enough injectives, then at is an equivalence.

Proof. We have that K*(9)Qis is a multiplicative system in K*(9) and lemma C.3.6 gives
the condition (ii) of proposition C.2.6, hence the natural functor

D*(¥) — D*(A)
is fully faithful, and lemma C.3.6 says that every quasi isomorphism in K*(¥) is an isomor-
phism, hence K* () = D*(9).

If now A has enough injectives, apply lemma C.3.7 to P = 9 and we have that every object
in D*(A) is isomorphic to one in K*(9). O

Remark C.3.9. With the dual construction, we can show that if ¢ is the additive subcategory
of injective objects, then the natural functor

a : K (P)— D (P)

is fully faithful. If A has enough projectives, then a~ is an equivalence.

C.4 Derived Functors

Definition C.4.1. Let K*(A) be a triangulated subcategory of A. Then K*(A) N Qis is a
multiplicative system in K*(A). We say that K*(A) is a localizing subcategory if the natural
functor

K*(A) g a)nqis — D(A)
is fully faithful and we will denote D*(A) := K*(A) N Qis

Example C.4.2. K*(A), K~ (A) and K®(A) are localizing subcategories for proposition C.2.6
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Definition C.4.3. Let A and 93 be abelian categories and K*(A) a localizing subcategory
of K(A), and let
F: K*(A) — K(9B)

be a o-functor. Let Q* : K*(A) — D*(A) and Q : K(9B) — D(9%) be the localization functors.
Then the right derived functor of F is a d-functor

R*F : D*(A) — D(9)
together with a natural transformation of functors from K*(A) to D(9%):
£:QF - R*FQ*
with the universal property that for every &-functor
G : D*(A) — D(R)

and every natural transformation
¢:QF - GQ*
there is a unique natural transformation n : R*F — G such that the following diagram

commutes
¢

N 2

R*FQ*

QF GQ*

By the usual argument, if R*F exists it is unique up to natural isomorphism.

Notation. If K*(A) is resp. K*(A), K~ (A) or KP(A), we will write R*F, R™F or RPF. If
there is no confusion, we will simply write RF. We will also write RPF for HP(RF)

Remark C.4.4. o If ¢ : F - G is a natural transformation and both RF and RG exist,
then there is a unique R¢ : RF — RG compatible with &€ This follows from the
definition:

OF -, RFQ*

le) RoQ*

QG —° RGQ*
So there is a unique R¢ such that £Q¢ = RpQ*Er

o If K*(A) C K*(A) are two localizing subcategories, then if
F:K*(A) — K(%)

is a o-functor, then if Q** is the localization functor for K**(A) we have a map (the
symbol "|" indicates the restriction of the functor to the subcategory)

QF (1) = (QF) k(1) = (RFQ)jgw( 1) = (RF)|pwe(1) Q™
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hence by the unversal property we have
R*™(Figs+(1)) — (R*F)p=(q)

In general, it is not an isomorphism, but for all the application we need it will be.

Theorem C.4.5 (Existence). Let A, B, K*(A) and F as before, suppose that there is a
triangulated subcategory L C K(A) such that

EX1 Every object of K*(A) admits a quasi isomorphism to an object of L

EX2 If I* € L is acyclic, then FI*® is acyclic

Then F admits a right derived functor (RF, €) and for every object I® € L,
£+ QF(I*) — RFQ™(I°)

is an isomorphism in D(%3).

Proof. First, we need to show that Fj;, preserves quasi-isomorphisms: let Iy 3 I, a quasi
isomorphism, complete it to a triangle (I1, 5, ], s, -, -). Then since L is triangulated | € L and
we have already observed that | is acyclic. Hence FJ is acyclic, and since F is a o-functor,
(FI,Fl,, F],Fs,F-, F.) is a triangle in K(9), and for the long exact sequence we have that

Fs . .. .
FI = FIy is a quasi isomorphism.
So by the universal property of the localization F induces a functor

F: Lois — D(B)

such that QF = FQ;y.
By hypothesis, L, Qis and K*(A) satisfy the same hypothesis as proposition C.3.8, hence
the full inclusion T : Lgis — D*(A) is an equivalence of categories. So fix a quasi inverse

U: D*(A) — Lois
and the natural isomorphisms
a: 1LQis = UT B : 1D*(J{) — TU

Then we can define R*F := FU. We need to define &:
Let X € K*(A) and let I € L such that Qp(I) = UQ*(X). Then we have an iso in D*(A):

Borx 1 Q"X = TU(Q™X) = TQ(I)

Since T is an inclusion, the isomorphism is represented by a diagram

X/Y\[
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where s, t are quasi isomorphisms, and by hypothesis EX1 we can suppose Y € L. Hence
applying F we have that F's is a quasi isomorphisms, so this gives an morphism in D(%)

£x: QFX — QFI = FQLI = FUQ*X = RFQ*X

It is obvious that £y does not depend on Y and it is natural in X. By construction then (RF, £)
is the derived functor of F (it is constructed to have the universal property). Moreover, if
in the construction X € L, we have that F(t) is a quasi-iso, so £ is an iso in D(%). O

Proposition C.4.6. Let A, 6B, K*(A) and F as before, K*(A) C K*(A) another localiz-
ing subcategory and that there is a triangulated subcategory L C K(ﬂ,) satisfying the
hypothesis of theorem C.4.5 and such that L n K**(A) satisfies the hypothesis EX1 for
K**(A) !. Then the natural map

is an isomorphism

Proof. Since if X € D**(A) is isomorphic to one coming from L, we can suppose X =
QI with I € L. By theorem C.45, £ is an isomorphism, then by the construction of
remark C.4.4 the natural map is an isomorphism.

Corollary C.4.7. Let A and 93 be abelian categories such that A has enough injectives.
Let
F:K"(A)— K(%RB)

be a S-functor. Then RTF exists.

Proof. Let L C be the triangulated subcategory of injective objects. Then by lemma C.3.7,
every object of K*(A) is quasi isomorphic to an object in L, hence EX1 is satisfied. More-
over, every quasi isomorphism in L is an isomorphism in K*(A) by lemma C.3.6, so F
preserves quasi isomorphisms, hence F sends acyclic complexes into acyclic complexes.
So the hypotheses of theorem C.4.5 are satisfied.

Corollary C.4.8. Let A, B abelian categories and F an additive functor. Assume there
is P C Ob(A) satisfying hypotheses (i) and (ii) of lemma C.3.7 and also

(iv) F preserves short exact sequences of objects of P

Then denoting again by F the induced 6-functor F : KT (A) — K+ (%), R*F exists.

Proof. Let L be the subcategory of K*(A) made of object of P. Since (ii) holds, P is closed
for direct sums, hence L is closed for mapping cones, so it is triangulated. Again, for
lemma C.3.7, EX1 is satisfied.

'hence it satisfies the hypothesis of theorem C.4.5, since EX2 comes from K*(A), i.e. both R*F and R**(Fjx+ ()
exist
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Suppose I* acyclic: since it is bounded below we have Ker(d") = 0 for n << 0, hence for
(ii) Ker(d™) € P for n << 0. If now Ker(d") € P, we have the exact sequence

0 — Ker(d") — I" — Ker(d™*') - 0

So since Ker(d" € P) and I" € P by (ii) Ker(d"*!') € P, hence for all n Ker(d") € P. So
since F preserves exact sequences

0— Flker(d")) — F(I") 2% Fiim(d™) — 0

is exact, hence Im(F(d")) = F(Im(d™)) = F(ker(d"*!) = ker(F(d"*1)).
O

Corollary C.4.9. If F, A, B are as in corollary C.4.8 and F has finite cohomological
dimension? RF exists and its restriction to D*(A) is equal to R*F

Proof. Consider P’ to be the collection of all F-acyclic objects and L' C K(A) be the trian-
gulated subcategory made of objects in P’. So (iv) holds by definition. Then, since P C P/,
hypothesis (i) of lemma C.3.7 is satisfied, and for the long exact sequence also is (ii). So
consider now a right exact sequence

0L, ot e g
with X! acyclic for i < n. Then we have at each level an exact sequence
0 — ker(f*=1) — X* - ker(f®)
and since X* is F-acyclic, R'F(ker(f¥)) = Ri*'F(ker(fk~1)), so in particular
RIF(X™) = R*"F(ker(f°))

Hence if n > cd(F), X" is F-acyclic, so also (iii) is satisfied, hence for lemma C.3.7, EX1
holds, and by the same argument as before EX2 holds, so RF exists, and we conclude by
proposition C.4.6 with K(A), K™ (A) and L’. Notice that EX1 holds since L C L'nK*(A) O

Proposition C.4.10. Let A, B and G be abelian categories, K*(A) and K'($B) be localizing
subcategories and let

be 0-functor.

a) Assume F(K*(A)) C K/(®B), assume R*F, R'G and R!GF) exist, assume R*F(D*A) C
DY(®B). Then there exists a unique natural transformation

¢ : R*(GF) — RIGR*F

’i.e. there is an integer n such that RIF(Y) =0 forall Y ¢ A — K*(A)andalli > n
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such that the following diagram commutes:

QGF — %L, RIGOIF

JgGF lRTGgF

R*GFQ* —*%, RIGR*FQ*

b) Assume F(K*(A)) € K/($), assume that there are triangulated subcategories L C
K*(A) and M C K'($B) satisfying EX1 and EX2 respectively for F and G, and assume
F(L) C M, so L satisfies 1 and 2 for GF. Hence a) holds and € is an isomorphism

Proof. Straight from the definition:
a) ¢ comes applying multiple times the universal property of R*(GF) to

QGF RIGEpéGF

RIGR*FQ
R

£GF .w'>ﬁj!CQ
RGF)Q

b) If I € L, then FI € M, so &cF(I), £p(I) and £g(F(I)) are isomorphisms and every object
X* is quasi-isomorphic to I* € L, so we can suppose X*®* = Q(I°®), hence

Cxe = Coupe) = RIGER(I°)EG(I°)Er(I°) !
So it is an isomorphism
O

Corollary C.4.11. 1. Let A, B and 6 be abelian categories such that A has enough
injectives. Let

F:K"(A)— K(%)
G:K* (%) — K(B)
be 6-functors such that F(K*(A)) C K*(94). Then R*FG = R*FR*G
2. Let A, B and G be abelian categories, let

F:A— %
G:8B—- 6
be additive functors. Assume that there exist P4 C A and Pg C 93 with properties
(i), (ii) and (iv).
e If F(P4) C Pg. Then R*GF = R*GR*F.

e If F, G and GF have finite cohomological dimension and F sends P, into
G-acyclic then RGF = RGRF
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Proof. Adapt arguments form corollary C.4.7 and corollary C.4.8

Remark C.4.12. Everything we did in this section can be applied to left derived functors:

Definition C.4.13. Let A and 93 be abelian categories and K*(A) a localizing subcategory
of K(A), and let
F: K*(A) — K(%B)

be a o-functor. Let Q* : K*(A) — D*(A) and Q : K(9) — D(95) be the localization functors.
Then the left derived functor of F is a o-functor

L*F : D*(A) — D(9)
together with a natural transformation of functors from K*(.A) to D(%B):
£: L'FQ* — QF
with the universal property that for every 6-functor
G : D*(A) — D(9B)

and every natural transformation
¢:GQ*— QF

there is a unique natural transformation n : G — £*F such that the following diagram

commutes
¢

GQ* QF
XQ* y
L*FQ*

By the usual argument, if L*F exists it is unique up to natural isomorphism.
Then theorem C.4.5 can be restated as

Theorem C.414. Let A, B, K*(A) and F as before, suppose that there is a triangulated
subcategory L C K!A) such that

EX1 Every object of K*(A) admits a quasi isomorphism from an object of L
EX2 If P* € L is acyclic, then FP*® is acyclic
Then F admits a right derived functor (LF, £) and for every object P® € L,
£p-RFQ*(P*) — QF(I°)
is an isomorphism in D(%3).
And

Corollary C.4.15. a. Let A and 9B be abelian categories such that A has enough projec-
tives, F : K~ (A) — K(9) a d-functor, then £~ F exists
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b. Let A and 9 be abelian categories, F : A — 93 an additive functor, let P C A such
that

(i’) Every object of A admits a surjection from an object of P (= every X®* € K~ (A))
has a quasi-isomorphism from a bounded above complex P*® of objects of P

(ii’) If 0 - X — Y — Z — 0 is a short exact sequence with Z € P,then Y e P & X € P
(iv)) F preserves exact sequences of objects of P.
Then X~ (F) exists

c. If F has finite homological dimension’, then LF exists and its restriction to D~(A) is
equal to £F.

and the same for the composition

C.5 Ext, RHom and cup products

Let A be an abelian category, X and Y in D(A). We will now study
Ext'(X, ¥) := Homp (X, Y[i]) = Homp )(X[~i], ¥)

Remark C5.1. If K*(A) is a localizing subcategory, X, Y € D*(A), then Homp 4 (X, Y[i]) =
Homp-( q)(X, Y[i]) since D*(.A) is fully faithful
Proposition C.5.2. Let 0 — X* L, v Z* = 0 an exact sequence of complexes. Then
for every V* we have long exact sequences

-+~ — Hom(Z*, V*[i]) —» Hom(Y*, V°[i]) —» Hom(X®, V*[i]) —» Hom(Z®, V®*)[i + 1] — ---

.+-— Hom(V*, X*[i]) —» Hom(V*, Y*[i]) - Hom(V*, Z*[i]) - Hom(V*, X°*[i +1]) — ---

Proof. Since Z°* is quasi-isomprphic to Cone(f), we conclude since Homp4)(_, V*) and
Homp 4)(V*®,_) are cohomological functors. The first comes form the fact that in D(.A)P
the translation functor is [—1] and Hom(X*[—i], V*) = Hom(X*, V*[i])

Definition C.5.3. If X*® and Y* are complexes of objects in A, we define a complex

Hom"(X*, ¥*) = [ | Hom4(X™, y™*")

meZ
and d™([T(f™)) = [T +dP + (—1)"+dE+nfm+n, Notice that by definition
dn({fm Lxmo_, Ym+n}) =0 ]cm+1d)r? _ (_1)ndr§1+n]¢m+n N fm+1d? _ di’n[n]fm

Hence if f is a morphism of complexes, and y the same mean we can see that f = d" g
iff f is null-homotopic. Hence

H"(Hom*(X*®, ¥*)) = Homg4)(X®, ¥*)
So we have a bi-0-functor

Hom?* : K(A)°P x K(A) — K(Ab)
%i.e. there is n such that foralli < —n and Y € A LF(Y) =0
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Lemma C.5.4. Let X € KA, and let I € K*(A) be a complex of injective objects. Assume
that either X or I is acyclic. Then Homp q)(X, Y) is acyclic

Proof. Since I[n] satisfies the hypothesis of the lemma for all n, it is enough to prove that
any morphism X — [ is null-homotopic. If X is acyclic, it comes from lemma C.3.6, if I is
acyclic, it splits, hence the homotopy is the one given by the splitting. O

We will use this lemma to derive Hom®. Let A be a category with enough injectives,
take L C K*(A) be the triangulated subcategory of complexes of injective objects. Then

Hom*(X®, ): K*(A)— K(A)

sends injectives into acyclic objects, then theorem C.4.5 holds, hence we have a right derived
functor, which by universal property is natural in X°, hence we can define a bi-o-functor

RyHom* : K AP x D*(A) — D(Ab)

Now fix ¥V € D*(A), then VY is quasi-isomorphic to a complex I of injective objects, so
RyyHom*(_, Y*) = Hom®(_, I*), which for the lemma preserves acyclics, so it extends to a
functor

RiR;fHom® : D(A)°P x D*(A) — D(Ab)

If A has enough projectives, we can construct by the same way
R;iRfHom® : D~ (A)°P x D(A) — D(Ab)

Then we notice that by definition of derived functors, we have the following lemma

Lemma C.5.5. If
T:Kx(A) x KI(B) — K(B)

is a bi-0-functor, suppose R;Ry;;T and RyiR;T both exist, then there is a unique natural
isomorphism compatible with &1 and &j11

Hence we will denote without ambiguity R*Hom?®.

Theorem C.5.6 (Yoneda). Let A be an abelian category with enough injectives. Then for
any X € D(A), Y € D*(A)

H'(R*Hom"®(X, Y)) = Homp (X, Y[i])

Proof. Consider s : ¥ — [ be a quasi iso to a complex of injective objects. Then by
lemma C.3.6
HOH’ID(JL) (X, Y[l]) = HomD(jL) (X, I[l]) = HOI’HKUL} (X, Y[l])

And as we have seen

Homp (X, Y[i]) = H'(Hom*(X,I)) = H(RHom*(X, ¥))
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Remark C5.7. If A has enough injectives, X, Y in A, then if ¥ — I* is an injective resolution
Ext'y (X, ¥) = H(Hom(X, I*)) = H(RHom"(x, ¥)) = Homp (X, Y[i])
So in this case Ext' (X, V) = Ext (X, V)
Definition C.5.8. We can define a pairing
Ext{(X, V) x Ext/(Y, Z) — Ext'Y(X, Z)
by taking the composition:
f € Ext'(X, Y) = Homp (X, Y[i])
g € Ext/(Y,Z) = Homp (Y, Z[j]) = gli] € Homp ) (Y[i], Z[i + j])
fUg:=glillf) € Homp (X, Z[i + j])
If F: D(A)— D(%) is a &-functor, we can also define a cup product
Extl, (X, V) x Extlz(FY, FZ) — Exty/ (FX, FZ)
by taking the composition:
f € Ext'(X, Y) = Homp (X, Y[i]) = Rf € Homp ) (RFX, RFY[i])

g € Ex{/(FY,FZ) = Homp 4)(RFY, RFZ[j))
f Ug = g[i]RF(f) € Homp ¢ (RFX, RZ[i + j]) = Ext'(RFX, RZ[i + j)

C.6 Way-out functors

Definition C.6.1. Let A and 93 be abelian categories, F : D*(A) — D(9) a d-functor. F is
way-out right if for all ny € Z there exists ng € Z such that for all X € D(A) such that
H{(X) = 0 for i < ny, then R(X) = 0 for i < ny. Similarly we define way-out left and
way-out in both directions

Example C.6.2. Let F: A — & a situation as in corollary C.4.7 or corollary C.4.8, then R*F
is way-out right. If F is as in corollary C.4.9, then RF is way-out in both directions.

Definition C.6.3. We define two truncated complexes:

(X®) = Q- X0 L

Top(X®) =-- > XP—0---

Oun(X®) =---0 > Im(d") —» X"*!...
(X*) =---X"' = Ker(d") —0---

Notice that Hi(0v,(X)) = H!(X) if i > n and H'(0> nX) = H'(X), and we have triangles in
D(A):

(Ton(X), Ton-1(X), X™) (05n-1(X), 0-n(X), H'(X))
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given by the exact sequences

0— Ton(X) = Ton(X) = X" — 0
0— H(X) — 0%4(X) = 0on(X) = 0

With oL ,(X) = 0 — X"/im(d"~! — X"*! — ... is quasi isomorphic to 0xpn_1*

Definition C.6.4. A subcategory is called thick if it is closed by extensions. In particular, if
A’ is a thick abelian subcategory of an abelian category A, then it is closed for short exact
sequence (i.e. every time two terms of a short exact sequence are in A/, also the third one
is in A/).

Then one can define subcategory K 4 (A) as the full subcategory of K(A) whose objects
are complexes X* such that H{(X) € A’. The thickness makes it a full triangulated subcat-
egory (i.e. every time two edges of a triangle are in K 4/ (A), so is the third one). We also
can define D 4/ (A) = K g/(A)qis and by proposition C.2.6 it is the full subcategory of D(A)
whose objects are complexes X* such that H/(X) € A’. Similarly one can define K% (A),
D7, (A) et cetera.

Lemma C.6.5. Let A and 9B be abelian categories, let A’ be a thick subcategory of A
and let F, G be 0-functors D}, (A) — D'®), and let n : F < G be a natural transformation.
Then

(i) Assume that n(X) is an isomorphism for all X € A/, then n(X*®) is an isomoprhism
for all X* € D%, (A).

(ii) Assume that n(X) is an isomorphism for all X € A’ and that F and G are way-out
right. Then nX* is an isomoprhism for all X* € D7}, (A)

(iii) Assume that n(X) is an isomorphism for all X € A’ and that F and G are way-out
in both directions. Then nX*® is an isomoprhism for all X* € D 4 (A)

(iv) Let P C A’ such that every object of A’ embeds into an object of P. Assume n(X) is
an isomorphism for every X € P and that F and G are way-out right. Then n(X) is
an isomorphism for all X ¢ A’

Proof. (i) Let X € D%, (A), then, X — 0-,(X) is a quasi isomorphism for n << 0, so it is
enough to prove by descending induction that

N(0>n(X*)) : F(05n(X®)) — Glo-n(X*))

is a quasi isomorphism. Since X* has bounded cohomology, for n >> 0 0.,(X) is
exact, hence n(o-,(X*)) = 0 is a quasi isomorphism. The induction step follows from
the fact that in the morphism of triangles

(n(o=n(X*)), (o= (X*), n(H"(X))) : (Fo(X), Fo-n(X), FH"(X)) — (Go:(X), Go-n(X), GH"(X))

n(H"(X)) is an iso by hypothesis and n(o-,(X*) is an iso by induction hypothesis, so is
n(OZn(X.)

Ldr(im(d™t) = 0, so im(d") = im(X™/im(d™1).
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(ii) It is enough to show that
Hn(X*): H(FX*) — H(GX*)

is an isomorphism for all j. Let ny > j + 2 and ny = min(n}, nJ) as in the definition of

way-out functors. Consider the triangle (0xn,(X®), X®, 0<n,(X*)) Since H(0wn,(X)) = 0
for i < ny, by the way out property

HY(Fosp,(X)) = H(Gown,(X)) = 0 i <np
In particular they are zero for i = j,j + 1, hence we have isomorphisms
HI(Fon, (X)) = HI(FX) H/ (G0, (X)) = HI(GX)

And since o<y, (X) € DY,(A), for the previous point we have that n(o<y,(X)) is a quasi
isomorphism, hence H/(n(X*)) is an isomorphism.

(iii) Apply the previous idea to 0-¢(X*®) and 0<¢(X*), and glue together with the exact se-
quence.

(iv) Consider X — I* a resolution by objects in P, it is enough to show that n(I®) is a quasi
isomorphism for all complexes in P since n(X) = H°(n(I*)), and the same technique as
in (ii) shows that it is sufficient to show it for I* bounded, and if we proceed as in (i)

but considering the triangle (1-n, T>n, X™) we have the induction step.
O

With the same techniques we can prove that:

Proposition C.6.6. If A and 9 are abelian categories and A’ and 93’ are thick abelian
subcategories, then if F : D 4/(A) — D(9B). Then

(i) Assume FX € Dgy (9B) for all X € A’, then FX®* € Dgy (9B) for all X € Df’ (A)

(ii) Assume FX € Dg(9B) for all X € A’ and F is way-out right, then FX® € Dgy(93) for
all X € D%, (A)

(iii) If F is way-out in both direction, then FX® € Dgy(93) for all X € D 4 (A)

(iv) Let P C A’ such that every object of A’ embeds into an object of P. Assume FX ¢
Dgy(9B) for all X € P and F is way-out right, then FX € Dgy (9) for all X € A’

Proposition C.6.7. Let A be an abelian category with enough injectives, let X* € K*(A).
Then the following are equivalent

(i) X* admits a quasi isomorphism into a bounded complex of injective objects
(ii) RHom®(_, X*®) is way-out in both directions

(iii) There exists ng such that Ext(Y,X®*) =0 forall Y € A and i > ny
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Proof. (i)= (ii) We have that

RHom(_, X*) = Hom(_, I°®)

and since I® is bounded it is way-out in both directions.

(ii) = (iii) Consider in the definition of way-out left ny = 0. Then there exists ng such that

(iii) = (i)

for all V* such that Hi(Y*) = 0 for i < no, H{(Hom®*(V*,X*)) = 0 for i > 0. Then
take the complex Y[—ng], by definition H(Y[—ng]) = 0 for i < ng, hence for all
i>0

0 = H{(Hom®*(Y*[—no], X*)) = H*™(Hom"*(V, X*)) = ExtT™0(V, X*)

Consider X* — I* a quasi isomorphism to a complex of injective objects bounded
below.

Claim H(I*) = O for i > no: suppose that there exists m > ng such that H'(I*) # 0.
Hence there exists a Y € A such that

Hom(Y, B™(I*®)) — Hom(Y, Z™(I*))
is a mono non iso. On the other hand,

ZMHom*(V, (I*)) = Homepq)(Y, I°lm]) ={f : Y > " :d™f = 0} =
Hom 4 (Y, Z™(I°))

and
B™Hom®(Y,(I*)) = {f:3s: YV — (I*)™1:sd™! = f} - Hom(V, B®(I*))
and we have a diagram

B™(Hom*(Y, (I*))) —— Z™B™(Hom*(Y, (I*)))

! Il

Hom(VY, B™(I*)) ———— Hom(Y, Z™(I*))

But since H™(Hom*(Y, (I*))) = Ext™(Y, X*) = 0 the top arrow is an isomor-
phism, which implies that the bottom arrow is epi, which is a contradiction.

Hence H{(I*) = 0, so for n > ny
Ognl. — I.

is a quasi isomorphism. To conclude, we need to show that 0<,I* is a complex
of injective objects, in particular we need to show that Z"*1(I*) = B"*1(I*) is
injective for n > ny.

Consider the exact sequence

0 — 0zn(I*) = > n(I*) —» BN I*)[-n] - 0



148 APPENDIX C. DERIVED CATEGORIES

which gives for all Y a long exact sequence
Ext"* NV, 1n(I%) — Ext™* 1 (Y, B*"1I*)[~n]) — Ext"**(Y, 02 (I*))
Since T<p(I*)[n + 1]p = 0 and 1<,(X*) is a complex of injective objects,
Ext™* 1V, T2n(X)) = Homg4)(V, T<n(X®)[n + 1]) = 0

And since o<, (I*) is quasi isomorphic to X*, by hypothesis Ext"*2(V, o-,(I*)) = 0,
)
Ext' (Y, B**1(I*)) = Ext"*'(V, B"*'(I*)[-n]) = 0

Then B"*!(I*) is injective.
O

An object X that satisfies the three equivalent conditions of proposition C.6.7 is said to
have finite injective dimension.

C.7 Application to schemes

C.7.1 The derived tensor product

Let X be a site, A a ring, D(X, A) the derived category of Sh(X,A). With the long exact
sequence one can see that the full subcategory FI(X,A) of flat sheaves is a triangulated
subcategory of Sh(X, A) satisfying EX1 and EX2. If F,G € D(X, A), one can consider the
double complex KP? = FP ®p G9, and define F®* ®p G*® as the total complex associate, so
there is a bifunctor

®: KX, A) @ KX, A)— K(X,A)
Lemma C.7.1. If F* € K(X,A) and G* € FI(X, A) such that
1. F* is acyclic OR G*® is acyclic
2. F* is bounded above OR G* is bounded.
Then F* ®p G*® is acyclic
Proof. By considering the two hypercohomology spectral sequences
'ENY = HPHL(K) = HP*9(K)"ES? = HR H (K) = HPTY(K)

The hypothesis 2. says that it is enough to prove that for (p,q) # (0,0) either 'E}? = 0 or
"ES? = 0. If G is acyclic, then BY(G) = Z4(G) is flat for each q, so

Tor1(FP®@BY) =0—FP® Z1— FP @5 GT— FP @ B1 — 0

is exact for all q, so 'E}? = 0 for (p,q) # (0,0).
On the other hand, since G4 is flat F* ®5 GY is acyclic, so "E5? = 0 for (p, q) # (0,0).
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SO one can consider
_ @k _:D7(X,A) x D"(X,A) > D™(X,A)
the derived functor £ £(®) = L1 L£1(®), and the hypertor
Tor;(F*,G*) = H™{(F*, G*)

Remark C.7.2. If everything is well defined, there is an adjunction _ ®l]§ K 41 RHom(K, _),
in fact considering X — I and P — L quasi-isomorphic complexes respectively of injective
and flat sheaves, then

HomD(X,A)(K ®§'\ L, X) = HOH]D(X'A)(K A P, I) = HomDQ{,A) (P, Hom(K, I))
= Hompx a)(L, RHom(K, X))

There is an analogue of proposition C.6.7 for Tor:
Proposition C.7.3. Let F* ¢ D*(X, A), then TFAE
(i) There is a quasi isomorphism F'* — F* such that F"* ¢ D%(X, \)
(i) The functor F* ®% _ is way out in both directions
(iii) There exists n such that Tor;(F*,G) =0 for alli > n and G € Sh(X, A)

Proof. The proof is exactly the same as in proposition C.6.7, except from the fact that in
(iii) — (i) the flat resolution P®* — F* given by lemma C.3.7 is not bounded below, but one
can consider the commutative diagram

p* — F*

! |

Oon(P*) — F*

and since F* is bounded below, 0.,(F®*) = X°® hence the proof follows considering the
bounded below quasi-isomorphic complex of flat modules o, (P*)°.

Definition C.7.4. An object F that satisfies the three equivalent conditions of proposi-
tion C.7.3 is said to have finite Tor dimension.

C.7.2 The Projection Formula

Let now f : X — Y and g : Y — Z morphism of schemes, then since f, preserves
injectives
R*g.R"f.F = R"(gf).F

and if f, has finite cohomological dimension

Rg.Rf.F = R(gf)«F

5Im(d®) is flat for condition (iii) of lemma C.3.7, since for n << 0 X" = 0, so 0.,(P*) is acyclic
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So consider F € Sh(X,A) G € Sh(Y,A) and f : X — Y a morphism of schemes. Then there
is a canonical map
G®Af*F_’f*f*G®i\f*F = f*(f*G®A F)

Remark C.75. f* preserves flat modules: in fact if G is flat and F ~— F’ is a mono, then for

every X is a geometric point

* ~ Ii /4 4
(f G®AF)x=Gfx®AF5c&Gﬁ®AFj=(G®AF)x

is mono. Hence, since f* is exact, we have that if P* — F* is a quasi isomorphic flat complex,
then
(f*F* ®% G*) = (f*P* @A G°)

Lemma C.7.6. Let F* € D(X,A), G* € D(Y, ) and f : X — Y. If one of these condition is
satisfied
a. f. has finite cohomological dimension, F* ¢ D7 (X,A), G* € D~ (Y, A)
b. G* € D*(V, A) has finite Tor dimension and F* € D*(X, A).
c. fx has finite cohomological dimension, G* € D*(Y, A) has finite Tor dimension
Then there is a canonical morphism

G* @k Rf.F* — Rf.(f*G* @k F*)

Proof. The idea is to take quasi isomorphisms F* — I*, P* — G*® and f*P®* ®p I* — J* such
that the derived functors are well defined in order to have the morphisms:

G* ®% Rf.F®* = P* @, fil°
— fi(f*P* @, I°)
— f4 *= Rf*(f*P. @A I.)
= Rf(f*F* ®F G°)
a. I* and J* are complexes of f.-acyclic sheaves and P*® is a bounded above comlplex of flat

sheaves. Then the derived tensor product is well defined on D~ (X, A) and Rf, is well
defined on D(X, A).

b. Since F* and G*® are bounded below, G®*®p f*F* is bounded below. I* and J® are bounded
below complexes of injective sheaves and P* is a bounded comlplex of flat sheaves. Then
since G* has finite Tor dimension the derived tensor product is well defined on D(X, A)
and Rf, is well defined on D* (X, A).

c. I* and J* are complexes of f,-acyclic sheaves and P°® is a bounded comlplex of flat sheaves.
Then since G* has finite Tor dimension the derived tensor product is well defined on
D(X, A) and Rf, is well defined on D(X, A).

O]
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Remark C.7.7. Consider A the subcategory of Sh(X, A) of locally constant sheaves. It is
easy to see using the long exact sequence that it is an abelian and thick subcategory. Let us
denote

TC‘(X' A) = D*jL(Xr A)

Proposition C.7.8 (Projection formula). Let f : X — Y with f, of finite cohomological
dimension. Then for any F* ¢ D~(X,A) and any G* € D, (Y, ), there is a canonical
isomorphism

G* @ Rf.F* 5 Rf,(f*G® ®f F*)

Proof. Since ® is right exact and f, has finite cohomological dimension, the functors _ ®§\
Rf.F* and Rf.(f*G* ®§‘\ F*) are way-out right. So for lemma C.6.5 it is enough to show that
the theorem holds for every locally constant sheaf G, and since being isomorphic is a local
property, we may assume G constant. Let M be the A-moudule associated.

Let L* — M — 0 a free resolution of M, and consider F — I°® be a quasi isomorphism into a
bounded above complex of f,-acyclic A-modules, andince LP is free, f*LP is locally constant
locally free, hence f*LP ® F’q is f.-acyclic. Then

G ®K RA.F 2 L° @ f.I°
Rf.(f*G ®@% Rf.F) = filf*L* @a I°)

And since L*® is free, L* — f.f*L°® is an isomorphism, hence
L*® QA f*F % f*L. XA f*F

is an isomorphism. O

C.7.3 Cohomology with support

If j: U~ X is an open immersion and i : Z = X\ U — X is the closed immersion of the
complementary. Recall the definition of proper support cohomology as the derived functor
of

I'z(X,F) = Ker(F — j,j*F) = {s € F(X) : supp(s) C Z}

If I is an injective sheaf, it is flasque, so
I — jj*I

is epi. In particular, by the mapping cylinder and the exactness of i*, for every injective
sheaf we have an exact sequence in Sh(Z, \)

0—i'l - i*I > i*j,j* I > 0

By applying the exact functor i, and using the adjunction we have in Sh(X,A) an exact
sequence

0 i, i'l i i*] —— i,i*jj* ] —— 0

| |

0 i, i'l I G 1 0
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Hence, for every K € D(Z, ), since i* and j* are exact we have the triangle:
i.Ri'K — K — Rj,j*K —

By applying the exact functor i, and using the adjunction we have in D(X, A) a morphism
of triangles

i Ri'F —— i,i*K —— L,i*Rj,j*)K ——

| | |

i Ri'F K i *Rjj* K ——

In particular, by applying Hompz a)(Zz, ), since Zz = i*Zx, Zy = j*Zx, i* and i, are exact,
i, is fully faithful so i*i, = id and j* I Rj, hence we have the triangle in D(A)

HomD(Z,A)(ZZ, Ri!K) — HOI’I’ID(X,A)(Z)(, K) — HomD(X,A)(ZU,j*K) —
Hence we have a long exact sequence
H"(Z,Ri'K) —» H"(X,K) — H"(U,j*K)

In particular, by definition, Hy(X, F) = H"(Z, Ri'F) = Ext}(iZz, F) and we have a long exact
sequence
H7(X,F)— H"(X,F)— H"(U,j*F) —

Proposition C.7.9 (Excision). If t : X' — X is Altale and Z' C X' is closed such that
Z = n(Z') is closed in X, 7y : Z' — Z is an isomorphism and st(U’) ¢ U where U’ and
U are the complementary open subsets. Then for any F the canonical map induces an
isomorphism Hy (X, F) = Hy, (X', m*F).

Proof. The canonical map induces a morphism of triangles

RTz(X,F) — RI'(X,F) — RI'(U,F) ——

| | |

RT z/(X', m*F) —— RI'(X', m*F) —— RI'(U, m*F) ——
Since if j : U — X is the open immersion, we have that if [ is injective the following diagram
I ——— jj*I
T ] ——— joj*mor*l

is a pullback by the universal properties of the adjunction, hence since i* is exact we have
again an pullback, so if i : Z — X, i’ : Z — X' are the closed immersions, we have an
isomorphism induced to the kernels i'I = i'm,st*I, which induces a quasi isomorphism

Hompz)(Z, Ri'F) = Homp,z)(Z, Ri'Rm, t*F) = Hompx) (7w*i,Z, 7°F)
And since 71*i4(Zz) = (i')+(Zz) since st is Altale, we have

H7(X, F) = Hompx)(i«Z, F[r]) = Hompx,(i,Z, 7*F[r]) = Hz(Z', 7*F)
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C.8 Useful spectral sequences

C.8.1 The Ext spectral sequence for Altale cohomology

Let X be a scheme and 71 : ¥ — X be a Galois covering with Galois group G. Then since
coverings are a Galois category for every G-module M there is a unique locally constant
constructible sheaf Fy; such that Fy;(Y) = M as G-modules.

Lemma C.8.1. If N and P are sheaves on X and M a G-module, there is a canonical iso
Homg(M, Homy(N, P)) = Homx(M ® N, P)

Proof. Since Homy (M, $om(N, P)) = Homy(M ® N, P) by adjunction, and since M is con-
stant on Y we have also the adjunction between constant and global section, so in degree
Zero

Homy (M, ¥Com(N, P)) = Homy (M, Homy(N, P))

By taking the G-invariants we have Homy(M®N, P)¢ = Homy(M®N, P) and Homz(M, Homy(N, P))¢ =
Homg(M,Homy(N, P)) O

Lemma C.8.2. Let I be injective and F flat, then Homy(F,I) is injective as G-module

Proof. Since I is injective, RHomg(_, Hom(F,I)) = RHomg(_, RHom(F,I)), so by previous
theorem: Homg(_, Hom(F,I)) = Homx(_® F,I) and by hypothesis it is RHomx(_®" F,I),
so it is exact. O

So Homy(_,_) sends flats and injectives into G-acyclics, so on D}’l we can derive the
composition:
RHomg(M, RHomy(N, P)) = RHomx(M ® N, P)

In particular, we have that if M @ N = M ®@F N, we have by the same idea
RHomg(M, RHomy(N, P)) = RHomyx(M ® N, P)
i.e. a spectral sequence
Ext% (M, Ext}(N, P)) = Ext{" /(M ® N, P)
Suppose now M @ N = M ® N, so we have
R¥Comg(M, R¥Comy(N, P)) = R¥omg(M, ¥Flomy(N, I)) = Flomx(M®N, I) = R¥omyx(M®'N, P)

So we have the theorem:

Theorem C.8.3. If M is a G-module, N and P sheaves on X, such that M @' N = M@ N,
we have a spectral sequence

Ext%(M, Ext}(N, P)) = Ext{"Y(M @ N, P)
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C.8.2 The Ext spectral sequence for G-modules

This spectral sequence can easily be deduced from the above calculations, but it can also
be deduced without the use of Altale topology. I illustrate this approach.

Throughout this section, G will be a profinite group. By a torsion-free G-module, we mean
a G-module that is torsion-free as an abelian group. Let G be a topological group and let M
and N be G-modules. Then consider Homy(M, N) as a Z[G]-module with action given by

1

o(f): m of(0™"m)

In general it is not a discrete G-module. So for H a closed normal subgroup of G, we may
define

Feomu(M,N):= | J Homgz(M,N)V

H<U<LG
open

By definition now $lomy (M, N) is a discrete G/H-module, and we define 8xt};(M,_) to be
the right derived functor of ¥lomgy(M,_). If H = 1, I will simply write

FCom(M,N) = | | Homz(M, N)V

U<G
open

If M is a finitely generated Z[GJ]-module, then let {e; ...en} be its generators, then
flajer + ...+ apepn) = arfler) + ...+ anflen)

So U = ;(Stab(e;) N Stab(f(e;))) is a nonempty open subgroup of G and f € Homz (M, N)Y.
In particular 8xt"(M, N) = Ext"(M, N)

Lemma C.8.4. For any G-modules N and P and G/H-module M, there is a canonical
isomorphism
Homgy(M, ¥omy(N, P)) = Homg(M ®7z N, P)

Proof. We have Homz(M, Homy(N, P)) = Homy(M ®z N, P). Taking the G invariants, on
the left:

Homg(M, HomZ(N, p)) = 6Hom(;/H(M, HomZ(N, P)) = 7H0m(;/H(M, %Omz(N, p))
On the right we simply have Homg(M ®7 N, P)

Lemma C.8.5. Let N and I be G-modules with I injective, and let M be a G/H-module.
Then there is a canonical isomorphism

Extly (M, Feomy (N, I)) = Homg(Tor”(M, N), I)

5M is a G/H-module
"M is discrete
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Proof. Since Z is a PID, TorZ(M, N) = 0 for all r > 2 and we have that if N is torsion-free,
by lemma C.8.4
Homg/y(_, Fomy(N, I)) = Homg(_ ®z N, I)

And we have that _®z N, exact since N is torsion-free, hence flat, and Homg(_, I), exact since
I is injective, hence $lompy(N, I) is an injective G/H-module. Take 0 - Ny — Np - N — 0
a torsion-free resolution of N, consider

0— Tor?(M,N) > M &z Ny - M ®z Ng - M®z N — 0

Since for all U open subgroups of G, Z[G/U] is a free Z-modules, _®z Z[G/U] is exact, and
SO
Homg(_ ®z Z[G/U],I) = Homy(_, I)

is exact since I is injective. Hence the exact sequence
0 — Homy(N, I) - Homy(Np, I) - Homy(Ny, I) — 0

is an injective resolution of Homg(N, I). Taking the limit over all U containing H, we have
that
0 — Flompy(N,I) — Flomy(Np, I) — Flomy(Ny,I) — 0

is an injective resolution of ¥lompy(N,I), hence we can calculate Extg,y; (M, Hompy(N, 1))
using this resolution.
So since we have a commutative diagram

Homg/g(M, $eomy(No, I)) —%— Homg/u(M, Flomy(Ny, 1))

Home(_ @z No, I) —————— Homg(_ ®z Ny, I)

We conclude that, since CoKer(a) = Exté/H(M, FClompy(Np, I)) and, since Homg/(_, I) is exact,
CoKer(B) = Homg(TorZ(M, N), I), the canonical iso is induced by the diagram.

Theorem C.8.6. Let H be a closed normal subgroup of G, and let N and P be G-modules.
Then, for any G/H-module M, we have

RHomg (M, R¥Comy(N, P)) = RHomg(M ®% N, P)
Proof. Since by lemma C.8.4 we have
Homg(M ®z N, P) = Homg,uy(M, ¥lomg(N, P))

And by lemma C.8.5 we have that ¥lompg(_, _) maps injectives and flats into acyclics.



Appendix D

An application: Rationality of
L-functons

D.1 Frobenius

From now on p is a prime, g = p/ for some f, ¢ is a prime different from p, [Fq is the finite
field of order g and F is its algebraic closure.

Xo an object defined over [, and X its extension to I (e.g., if $o is a sheaf on a scheme Xg
on [y, then § is the extension of Fp on X = Xy xp, Spec(F)).

We denote by Fry the Frobenius endomorphism on X, i.e. the identity on the topological
space, and locally on the sheaf Fry(t) = t9, and by Fr its extension. On X(F) = X (F), it acts
like the Frobenius endomorphism of Gal(F/Fy).

Frobenius and base change Consider U 55 X an X scheme, then we have a natural map
Fryx:U— U xx X (here, X is seen as an X-scheme via Fry)

Lemma D.1.1. If 7t is unramified, then Fryx is unramified and injective. If 7t is Altale,
Fryx is an isomorphism

Proof. Let U/X unramified. Then pry: U xx X — X is unramified, and since proFry)x = 7,
Fryjx has discrete fibers and since if K C Lo C L is a tower of field with L/K and L/Lg
unramified, then L/L¢ is unramified, hence Fryx is unramified, and since Fry is the identity
on the topological space, Fry)x is injective.

If now st is Altale, consider x € X and z € pry (x), hence k(z) = L is finite separable over
k(x) = K. Take now y € t~!(x), then Oy is a flat Ox r-module, hence

0— Ouy ®ox, K— Ouy ®oy, L

156
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is exact and finite, hence we have an induced surjective map

Spec(Ouy ®oy, £) — Spec(Ouy Roy, K)

I |

Fril({z) v}

hence Fry)x is surjective, hence an isomorphism.

Frobenius correspondence If §; is an abelian sheaf on Xy, then by previous lemma
Fr§%o = §o, so we have an endomorphism (the Frobenius correspondence):

Fr':3— 5%

which extends to an endomorphism (denoted again by Fr*) on H.(X, §).
Remark D.1.2. Frobenius correspondence is functorial in Xy and §o, in the sense that if

Xo b, Yo is a morphism and u € Hom(f}§, ) = Hom(g, fo,.®), then the following diagrams
commute:

F fEFrt Fre
Xo — Xo fi%0 —> fiSo §o ——— %o
[ A
Fry Fry foFry
Yo — Y By — & f0+®0 —— fo0+Bo
(see [Del]) for details

D.2 Trace functions

D.3 Noncommutative Rings

Let A be a unitary not necessarily commutative ring, let AP be the quotient of the additive
group of A by the subgroup generated by (ab — ba). If f = (f;) : A" — A" is a morphism of
free left A-mod of finite type, we can denote by Tr(f) the image of ) ; f; in AL

Remark D31, If A L Am and A™ %, A", we have Tr(fg) = Tr(gf) following trivially from
the commutative case.

If now f is an endomorphism of projective A-mod of finite type P, then we can choose P’
and aniso a: P@P’ = A", hence a sectiona : P — A™ and a retraction b : A™ — P. Consider
f' = alf ®0)a~! = afb, it is an endomoprhism of A", hence we can define Tr(f) := Tr(f’).
It does not depend on a, b, in fact if ¢, d are different morphism, since dc = id and ba = id
one has a = adcba and we already know that on free modules Tr(fg) = Tr(gf), so

Tr(afb) = Tr(adcbafb) = Tr(cbafbad) = Tr(cfd)
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If now f is an endomorphism of a projective Z/2Z-graded A-modules (i.e. P = Py @ Py with
AP; C P;,4 with indexes in Z/2Z), we have components fl.] : P; — P;, we have

Tr(f) = Tr(f) — Tr(fi)

If now f is an endomorphism of a projective Z/2Z-graded A-modules filtered with a
finite filtration compatible with the graded structure (i.e. P = PO ¢ P1 with AP ¢ pli+1)
with indexes in Z/2Z and PY = P 5 .. pY with APY ¢ PU*Y), then

Tr(f,P) =) Tr(f, Gri(P))

In general, if f is a morphism of complexes of projective A-modules, then
Tr(f) = Y (—1)(Tr(f', K'))

and in part. if f is null-homotopic, then Tr(f) = Tr(dH + Hd) = 0

D.3.1 On the derived category

Let Kga”(/\) be the full subcategory of KP(A) with objects complexes of projective A-
modules of finite type. The inclusion Kpqrf(A) — D(A) is fully faithful and we can denote
Dgarf(]\) the essential image. So we can define a trace on Dgarf(A) using the definition
above, since it does not depend on the homotopy class.

We can do the same thing on KFpqrf(AA) of the filtered complexes, and get that DFpqrf(A\)

is the category of filtered complexes such that for all p Gr?(K) € Dgarf(]\). Then

Tr(f, K) = ) (Try, Gri(K))
p

We can also do the same thing for sheaves: if X is a scheme, A a ring, then DEU (X, ) is the
full subcategory of D~ (X, A) whose objects are quasi-isomorphic to bounded complexes of
constructible flat sheaves of A-modules.
Recall that a complex K € D~ (A) is said to have Tor-dimension < r if Vi < —r and V N
right A-modules we have

Tor;(N,K) = H{(N @% K) = 0

For the complexes of sheaves of A-modules in D~ (X, A)!, we consider the tor dimension
with respect to constant sheaves of A-modules.

Lemma D.3.2. Let A be a left-Noetherian ring. If K* a complex of A-modules (resp.
sheaves of A-modules) such that H(K*) are of finite type (resp constructible) and zero
for i >> 0, then there exists a quasi-isomorphism K' = K with K’ bounded above with
component free of finite type (resp. constructible) and flat.

!The problem here is that Sh(X, A) has not enough projectives, but one can show that there are enough flat
objects and the derived functor does not depend on the flat resolution. See [Har]
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Proof. For m such that H/(K) = 0 for i > m, we can consider K" = 0 for i > m. So we
need to use induction: we are in the situation of having K" V i > n:

Kn—i K Kn+1 ..

|

K/n+1 ...

Such that H{(K) = H!(K’) for i > n +1 and Ker(d) - H"*!(K). Hence we can construct by
pullbacks:

K" —— K"/Im(d) —— Ker(d) —— H"*Y(d) —— 0

T

A = B

Hence u is an epi (pullback of an epi in abelian category) and the bottom-line sequence is
exact. Since A is noetherian, Ker(d') is of finite type (resp. constructible), H"*1(d) is of
finite type (resp. constructible) by hypothesis and

Ker(B — Ker(d')) = H"(d)

by pullback-rule, also of finite type (resp. constructible) by hypothesis, hence B is of finite
type (resp. constructible).

To conclude, one should take v : K™ — A such that uv is epi with K" satisfying the
hypothesis: for A-mod, it is enough to take a free augmentation of finite type A/ — B, since
a free module is projective one can lift to A/ 5 B such that uv is the augmentation map,
which is surjective.

In the case of sheaves, one has that if S C {¢: U — X étale}, then we have a diagram

A—" % B

1

Ds oA

and since B is constructible, A is Noetherian and X is Noetherian, there is a finite S and
finite J, such that uv is epi.

Lemma D.3.3. Let X be a Noetherian scheme, A a left-Noetherian ring, K € D~ (M) (resp
K € D7 (X,A)), then K € Dparf( ) (resp K € Dctf( ,N\)) if and only if K has finite Tor-
dimension and H!(K) are of finite type (resp. K has finite Tor-dimension and H'(K) are
constructible).

Proof. ” = ” is trivial: since A and X are Noetherian H!(K) is of finite type (resp. con-
structible) since K is a complex of modules of finite type (resp. constructible sheaves), and
they are also flat, so Tor;(N, K) = 0 for i # 0, N A-mod (resp. Tor;(N,K) =0 fori # 0, N
sheaf of A-mod)

” & ” Since A is noetherian, by previous lemma we can take K’ a complex of free modules
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of finite type (resp. flat and constructible) quasi-isomorphic to K, so we can suppose K"
free of finite type (resp. flat and constructible). We need to show that it is bounded below:
if K has Tor-dimension < r, we have H{(K) = 0 for i < —r (take N = A, resp N = ©¢i(A)).
In particular, we have a flat resolution

o KTV S KT K Im(d) — 0
And forall Nand n > 1
Torn (N, K"/Im(d)) = Tor,(N,K™"/Im(d)) = H " "(N®% K) = 0

Hence K "/Im(d) is flat of finite presentation, hence projective of finite type (resp. flat
constructible). So we have
0— K/Im(d) — K.

is quasi-isomorphic to K, and it is bounded below, hence it is bounded, so it is in Dgarf(]\)

(resp. in DEU (A)) O

Theorem D.3.4. Let X > V a separated morphism of finite type between Noetherian
schemes. If K € DY(X, A), then Rfi(K) € D2 (Y, M)

Proof. Consider a compactification X — X EN V. Since f is a proper morphism, f, has finite
cohomological dimension (consequence of the proper base change and Tsen theorem, [Del,
Arcata IV, 6.1]) and so it defines a functor

Rf,: D (X,A)— D (V,A)
By composition with ji : D7(X, A) — D~ (X, A), we can define Rf; on the whole D~(X, A).
So we have the hypercohomology spectral sequence

Ey = RPAHI(K) = RP*I(fiK) = HP*9(RfIK)

And since HY(K) is constructible, since RPf{HY(K) is constructible ([Del, Arcata IV, 6.2]) we
conclude that the cohomology of Rf;K is constructible.
Suppose that the Tor dimension of K is < —r, take N a constant sheaf, then the spectral

sequence
RPf,(HYUN @™ K)) = RPTIf,(N @" K) = HP*U(Rf,(N @’ K))

On the second page is zero for q < r, hence H' (Rf,(N @' K)) = 0 for i > q We now can
conclude that Rf;K has finite Tor dimension after this lemma:

Lemma D.3.5. For all constant sheaves of right A modules, one has
N &@"“RfiK = Rfi(N @ K)
Proof. a) Since ji is exact, one only have to prove it for f,, then one can suppose f proper.

b) Considering an acyclic complex quasi-isomorphic to K, we have Rf,K ~ f.K, so we can
work with bounded above complexes since f, is of finite cohomological dimension.
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c) If N is free, we have
RPf, (N ® K9) = N ®p RPf, K4

So N ® K1 is acyclic for f, and f,(N ® KP) = L ® f,K4
d) Taking N, a free resolution of N, we get N @ K ~ Tot(N, ® K). Hence
Rf.(N @' K) ~ Rf,Tot(N, ® K) ~ Tot(N, @ f.K) ~ N @" Rf,K
In particular if Y is the spectrum of a sep.closed filed, then

Rfi = Rl'¢ : D2 (X, A) — Db

pers (1Y)

D.4 Q,-sheaves

A Ze-sheaf § is a projective system of sheaves {F, } such that §, is a constructible sheaf of
Z/¢"*1Z-modules such that
Sn ®Z/f“+1Z Z/f”Z — gn_i

is an isomorphism. §F is lisse if §, are locally constant. It can be shown ([Del]) that any
Ze-sheaf on a Noetherian scheme is locally lisse.
The stalk in a geometric point x of § is the Zy,-moule §, = lim§, From now on, I will

denote §, as § ® Z/€"*1Z. This should be intended in the sense of the previous definition.
Using Artin-Rees, one can show that the category of Z,-sheaves is closed by kernels ([Del]),
and clearly it is closed by cokernels.

Remark D.4.1. Recall that a sheaf § is locally constant constructible if and only if it is
represented by a finite Altale covering V — X. If X is connected and ¥ is a geometric point,
then the stalk in x induces an equivalence between the category of the sheaf of Z/¢"Z-
modules constructible locally constant and the category of Z/¢"-modules of finite type with
a continuous action of Iy (X, x). This is given by the restriction of the equivalences:

FEty (xx{x}

— 11
l&/onedy7

{l.c.c sheaves]

1(X, x)set/

So we have, by passing to limit

Proposition D.4.2. If X is connected and X is a geometric point, then the stalk in x
induces an equivalence between the category of the Z,-sheaves lisse and the Zg,-modules
of finite type with a continuous action of Iy (X, x)

A Zy-sheaf is torsion free if the map induced by the multiplication by ¢ is injective. It is
torsion if that map is zero.
One can consider the abelian category of Q¢-sheaves as the quotient of the Z,-sheaves by
the torsion Zg-sheaves. In particular, its objects are Z,-sheaves denoted by § ® Q; and the
arrows are
Hom(F ® Q¢, & ® Q) := Hom(g, &) ®z, Qq
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The stalk in a geometric point x is the Qp-vector space §, ®z, Q¢ and the cohomology and
proper-supported cohomology are defined as

Higy(X, ) := (lim HE, (X, § ® Z/€"Z)) @z, Qe

Proposition D.4.3. Let X be separated of finite type on an algebraically closed filed k,
then for all § Q, constructible sheaves with § = § ® Q; we have HY (X,3) are finite Qy
vector spaces.

Proof. Consider a collection
Kn = RTo(X, § @ Z/€"Z) € Dpars(Z/€"17)

We need to adapt Lemma 4 to this context: if A — A’ is a morphism of noetherian torsion
rings, K € D¢¢(X, A), then we have an iso in Dpqps(7\')

RI(X, K) ®% A" = R (X, K % )

The idea is to reduce to the proper case, replace K by a complex acyclic for I’ and with
stalks in any geometric point homotopically equivalent to a complex of flat A-modules. This
gives us I'(X, K) ~ RT'(X, K) and K @y A’ ~ K ®% A’. Hence we get

RI(X,K) @k A — [(X,K) @k A" — T'(X,K®p A) «— RIO(X, K @k A)
In particular, in our case, we get in Dyq,f(Z/¢"Z)
Kn ®Z/gn+1Z Z/E"Z ;’ Kn_i

So we can replace again K, by complexes of free modules of finite type and the isomor-
phisms given above by isomorphisms of complexes.
Take now K = lim Ky, it is a bounded complex of free Z; modules and K, = K ®z, Z/en 7,

Fix now i € Z. Since each H!(K,) is a finite abelian group, we have that the decreasing
sequence ‘ .
H'(K,) — H'(Kn_1)

eventually stabilizes. Hence we have the Mittag-Leffer conditions and lim is an exact functor.

—

Hence ‘ _
H'(K) = lim H' (Kp)

So lim H(K,) is a Z,-module of finite type, hence
H{(X, ) = im(H' (Ky)) @z, Q

is a finite Qg vector space.

Theorem D.4.4. If Xy is a separated scheme of finite type on 4, A a Noetherian torsion
ring killed by an integer prime to q. Let Ko € DPctf(Xo, A) then we have

Y Tr(Fr"* Ky) = Tr(Fr™*, RTc(X, K))

xeXFrm
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Corollary D.4.5. For all n, let 8y be a Q,; sheaf, then we have
Y Tr(F™, &) = Y (-1)'Tr(Fr*", HL(X, 8))
xeXFrmt i

Proof. Substituting Fq with Fgn and Xo with Xo xp, Spec(Fqn), we can reduce to the case
n=1.

Let 3o a Z, sheaf torsion free such that & = §® Q,, and let K,, = RT'(X,§ ® Z/"*17). We
have the induced endomorphisms:

Fr*: K, — K,

which are deduced one by the other via the isomorphisms. We can replace K, with quasi
isomorphic complexes such that Fr* is in fact an endomorphism of complexes. Again we
have

HU(X,®) = H(K) ® Q = H'(K ® Q)

Hence seeing K, and K* ® Q, as filtered complex with filtration given by cycles and bound-
aries, we get:

Y (~1)'Tr(Fr*", H{(X, ®)) = Tr(Fr,K* ® Q) = Tr(Fr,K*) = lim Tr(Fr, K}) =

i
lim Tr(Fr, RT'(X, § ® Z/¢"17))
We can use Theorem 2:

Tr(Fr,RT(X,§ @ Z/"*'Z)) = Y Tr(Fr*,§, ® Z;*') = Tr(Fr*,§;) mod £"*!

xeXF

Passing to the limit we have the result

D.5 L-functions

Let Xo be a scheme of finite type over Fy, q = p’, |Xo| the set of its closed points, Fo a
constructible Q-sheaf.

Definition D.5.1. We have the L-function associated to §g given by

L(Xo, o) = [ | det(t — FritE®%l 5= c Q1]

xE|X0[

Theorem D.5.2. If Xy is separated, then

L(Xo, $o) = l_[det(l — Fr*tf,P[é(}gg))(%)”1

In particular if H.(X,J) = 0 for i >> 0, then L(Xo, §o) is rational.
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Proof. Since both series have constant term 1, then we can compare their logarithmic
derivative, and we have a formula: let f an endomorphism of a projective module over a
commutative ring, then

d n
tﬁlogi—ﬁ ZTI']‘

Hence

tilog L(Xo, o) = Y Y [k(x): Fp|Tr(Fri", §) Tk

dt
JCE|X0] n

and changing the order of summation and developing using the points in the extensions:

Ztn Z Pt Sx)

xeXFrt

On the other hand

¢4 logl_[det (= Fr*df, HL(X, 5)) -0 Zt“Z Tr(Fr*", Hi(X, §))

And comparing term by term by Corollary1 we conclude.
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